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Abstract

Isolating sound sources in an auditory environment is a skill humans use daily.

Developing computational systems to replicate this ability could drive enhance-

ments in hearing aids, music production and forensic audio. This thesis investi-

gates the application of deep generative models for this purpose, culminating in

a modified Bayesian Annealed Signal Source (BASIS) separation approach being

introduced. This method leverages variational autoencoders to compute deep

generative priors used in noise-annealed Langevin dynamics to sample from the

posterior over the sources given a mixed signal, enabling effective separation. A

multi-modal method for incorporating visual information into Modified BASIS

is also proposed, but fails to improve performance. Experiments using pop and

chamber music show promising results, but suggest a sensitivity to in-class vari-

ability. This highlights both the potential of deep generative models for audio

source separation, but also the challenges future work must address.
1

1
The code repository for this thesis can be found at https://github.com/maxjappert/

mmdgass (accessed September 7, 2024).
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Chapter 1

Introduction

1.1 Problem Statement
Audio signals arriving at the ear usually consist of a mixture of sources, such

as the sound originating from social environments, music recordings or noisy

voicemails. Separating the sources of mixed signals is intuitively easy for hu-

mans, as it is a task essential for survival and is performed on a daily basis. A

computational system to rival human performance in this domain is yet to be

developed. Developing and deploying such a system could have a significant

impact on many fields:

• Audio-to-text systems could transcribe only the relevant voice and ignore

interference.

• Cochlear implants could similarly separate background noise from rele-

vant signals.

• Individual instruments could be isolated from a mixed recording when pro-

ducing music. Bleed could be minimised.

• Forensic audio could be enhanced, extracting only the relevant signal.

There have been many attempts to use deep learning for audio source separa-

tion. This has been the case especially since the AI boom in the late 2010s, where

increasingly deep and powerful models were made possible by revolutionary ar-

chitectures like AlexNet (Krizhevsky, Sutskever, and G. E. Hinton, 2012), GANs

(Goodfellow et al., 2014), ResNet (K. He et al., 2016) and transformers (Vaswani,

2017), technical innovation (Nvidia, CUDA, PyTorch), as well as financial incen-

tive. There is an ongoing research effort to find new algorithms, architectures and

training regimes to improve the state-of-the-art in computational audio source

1



separation. The goal is to develop a system that can reliably and efficiently sep-

arate audio sources.

1.2 Objectives
Generative artificial intelligence effectively models complex high dimensional

data. Since audio falls into this category, it stands to reason that deep generative

models can be leveraged for this task.

This thesis focuses on identifying potential deep generative approaches, com-

paring them to both traditional methods and state-of-the-art architectures. Based

on these evaluations, this thesis will suggest a novel method. This best-performing

approach will be analysed and evaluated, with suggestions provided for future

work. A secondary objective is to explore the integration of visual information to

enhance audio source separation, emphasising a shift from uni-modal to multi-

modal processing.

A helpful heuristic for designing AI systems and selecting features is to con-

sider how humans — or other biological systems shaped by evolution — would

approach the problem and which features they would intuitively use. As dis-

cussed in Sections 2.1.3 and 2.1.4, audio-visual integration plays a crucial role in

human auditory scene analysis, to the point where the brain has evolved a sep-

arate region to integrate multiple stimuli. This thesis attempts to leverage such

insights from human perception in order to inform the development of a novel

audio source separation approach.

This thesis will evaluate the described approaches using baselines and exper-

iments described in the following sections. As this is an ambitious task limited

to a three-month Master’s thesis, the focus lies on a proof of concept for novel

methods.

1.3 Thesis Structure
In Section 2 provides a review of existing literature, covering previous work on

the topics addressed in this thesis. Section 2.1 provides a brief introduction into

audio signal processing, in order to make the thesis self-contained. Section 2.2.3

focuses on the quantitative metrics proposed by Vincent, Gribonval, and Févotte

(2006) to assess source separation performance. In Section 2.2, seminal audio

source separation techniques are discussed alongside more advanced deep learn-

ing approaches. Section 2.3 reviews prior work on multi-modal integration. As

the visual information is provided by video data, Section 2.4 outlines various

methods for extracting video features.
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The algorithms and trained models used in the experiments outlined in Sec-

tion 4 are described in Section 3. Section 3.1 introduces the datasets and how

they are preprocessed. Section 3.2 introduces the models, their architecture, hy-

perparameters and the training process.

Section 4.1 describes the experiments and 4.2 presents their results, which

are discussed in Section 5. The thesis concludes with Section 6, summarising

what has been written, offering suggestions for future work and describing the

derived implications.

1.4 Notation
A variable typed in boldface is either a vector v ∈ Rn

or a matrix M ∈ Rm×n
. I

denotes the identity matrix and i describes the imaginary unit satisfying i2 = −1.

A complex number z ∈ C is defined as

z = a + ib.

for a, b ∈ R. Its magnitude is defined as

|z| =
√

a2 + b2.

All other lower-case, standard-face variables describe scalars. A variable with

a hat x̂ describes the approximation or reconstruction of a corresponding ground

truth x. Square brackets denote the index or indices of a vector or matrix, e.g.

v[n] = vn ∈ R such that

v =


v1
.
.
.

vn


and X[m, n] = xmn such that

X =


x11 x12 · · · x1n

x21 x22 · · · x2n
.
.
.

.

.

.
.
.
.

.

.

.

xm1 xm2 · · · xmn

 .

The operator ⊕ denotes vector concatenation

3



v ⊕w =



v1
.
.
.

vn

w1
.
.
.

wn


.

4



Chapter 2

Literature Review

2.1 Background

2.1.1 An Introduction to Sound
Sound consists of oscillating pressure changes in the air. These pressure changes

can be detected by a membrane, such as the ear drum or a microphone diaphragm,

and can then be converted to electrical signals which can be processed further.

We can represent the oscillating pressure changes as waves. Sound, i.e., the os-

cillating change in air pressure, is generated by vibrations, which can be induced

by anything from a string on a violin to a membrane in a loudspeaker or vo-

cal cords. Air particles vibrate around an equilibrium position, at which their

velocity is maximised. The velocity is minimised at the position of maximum

displacement (Berg, 2024).

Audio can be mathematically represented in two spaces:

• In real space, where the x-axis represents time (as consecutive samples

in the discrete case) and the y-axis represents amplitude as oscillating dis-

placement from the equilibrium position.

Figure 2.1: Visualisation of a sine-shaped sound wave in real space. Reproduced

from Everest (2022).
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Figure 2.2: A visualisation of three audio signals represented in real space on the

left and frequency space on the right. Reproduced from Abdullah et al. (2019).

• In frequency space, where the x-axis represents the frequencies in Hertz

(Hz) and the y-axis represents amplitude in decibel (dB).

An example of the two spaces is provided in Figure 2.2. Hz measures fre-

quency as the number of oscillations per second. dB measures the relative loud-

ness of a sound on a logarithmic scale based on sound pressure level P as

dB(P ) = 10 log10

(
P

P0

)
(2.1)

where P0 = 20µPa is the reference sound pressure representing the thresh-

old of human hearing (Berg, 2024).

When recording with a microphone, the signal is captured in real space as

oscillating voltage, representing sound as a function of time. To visualise the

constituent frequency components of a sound during a given time interval, it

can be transformed into frequency space, where it is represented as a function

of frequency. This transformation is achieved through a Fourier transform. The

Fourier transform is computed as in Equation 2.2 in the continuous case and 2.3

in the discrete case.

X(f) =
∫ ∞

−∞
x(t)e−i2πft dt (2.2)

6



X[k] =
N−1∑
n=0

x[n]e−i 2π
N

kn
(2.3)

Thereby f ∈ R≥0 are the continuous frequencies and k ∈ N are the frequency

bin indices in the discrete case. When working with digital audio, which is in-

herently discrete, the Fast Fourier Transform (FFT) algorithm, introduced in a

seminal paper by Cooley and Tukey (1965), is commonly used. FFT significantly

reduces the O(N2) time complexity of computing Equation 2.3 to a more effi-

cient O(N log N) for a sequence of length N . It achieves this through a divide-

and-conquer approach, breaking down the computation into smaller parts while

exploiting the symmetry and periodicity of the complex exponential functions

in Equation 2.3.

Algorithm 1 Fast Fourier Transform (FFT) (Cooley and Tukey, 1965)

1: Input: Array of complex numbers a of length n (where n is a power of 2)

2: Output: Array y of length n representing the discrete Fourier transform of

a
3: n← length(a)
4: if n = 1 then
5: return a
6: end if
7: ωn ← exp

(
−2πi

n

)
8: ω ← 1
9: a0 ← (a0, a2, . . . , an−2)

10: a1 ← (a1, a3, . . . , an−1)
11: y0 ← FFT(a0)
12: y1 ← FFT(a1)
13: for k = 0 to n/2− 1 do
14: y[k]← y0[k] + ω · y1[k]
15: y[k + n/2]← y0[k]− ω · y1[k]
16: ω ← ω · ωn

17: end for
18: return y

A sine wave, as shown in Figure 2.1, contains only a single frequency and is

referred to as a pure-tone. A real-space representation is given in Equation 2.4

x(t) = A sin(2πft + ϕ) (2.4)

where A ∈ R>0 is the amplitude and thus determines the loudness, f ∈ R>0
is the frequency in Hz, t ∈ R≥0 is the time (or the sample index t ∈ N in the

7



Figure 2.3: Visualisation of how sound waves are converted to a continuous elec-

trical signal. Reproduced from My New Microphone (2019).

discrete case) and ϕ ∈ R is the phase, i.e., the offset along the x-axis.

Digital Signal Processing for Audio

Sound, as continuous vibrations in the air, must be transformed into a discrete

format for digital processing. Microphones relay the sound they record using

a diaphragm, a thin, flexible membrane which vibrates when struck by sound

waves. These vibrations are then converted into a continuous electrical signal by

a transducer, which can be directly amplified. Figure 2.3 provides a visualisation

of this process.

Analog-to-digital and digital-to-analog converters (ADC and DAC respec-

tively) convert to and from a digital representation of a signal. ADCs work by

taking samples of the continuous signal at a given sampling rate. Nyquist (1928)

shows that higher sampling rates improve reconstruction quality up to a limit.

The Nyquist sampling theorem defines the Nyquist rate, which is the minimum

sampling rate required to perfectly reconstruct a continuous signal from its dis-

crete samples, as shown in Figure 2.4. The Nyquist rate is defined as twice the

maximum frequency of the signal. As such, the sampling rate fs must satisfy

Equation 2.5 for perfect reconstruction.

fs ≥ 2fmax (2.5)

It follows that the necessary sampling rate is dependent on the maximum fre-

quency of the signal. Thus, for a signal with frequencies f ∈ [a, b], the sampling

rate fs = 2b will results in a reconstruction perceptually identical to any higher

rate f ′
s > 2b. The Federal Standard 1037C (Ingram and Gray, 1998), an authorita-

tive telecommunications standard, defines the maximum talking frequency of the

human voice at 3400 Hz. Thus, a sampling rate of 8000 Hz suffices for telephone

communication. For more complex signals covering the entire range of human

hearing, approximately 20 – 20’000 kHz, a higher sampling rate of fs ≥ 40 kHz is

required. Compact disks (CDs) operate on a sampling rate of 44.1 kHz, which is

8



Figure 2.4: Visualisation of an analog signal, i.e., the output in Figure 2.3, being

converted to a digital signal using an ADC and back into an analog signal using a

DAC. The lines represent the sampling operation. The smoothing filter operation

is a low-pass filter with a cutoff frequency fc ≤ fs

2 trivially derived from Equation

2.5. Reproduced from Embedded Robotics (2020).

sufficient to perfectly reconstruct a signal within the human hearing range and

additionally decomposes into the product of the squares of the first four prime

numbers as

44100 = 22 · 32 · 52 · 72. (2.6)

2.1.2 Spectrograms
Spectrograms X ∈ CT ×F

are a complex sound representation capturing time,

frequency, amplitude and phase information. The real part, called the magnitude

spectrogram |X|, can be plotted as a 2-dimensional figure where the x-axis is

time ti ∈ R≥0, the y-axis denotes the frequencies fj ∈ R>0 and the magnitude

of each complex scalar |X[i, j]| is the amplitude of the frequency fj at time ti

in dB. Thereby i ∈ {1, . . . , T} and j ∈ {1, . . . , F} are the indices. Figure 2.5
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Figure 2.5: A signal x in real space on the top with the corresponding magnitude

spectrogram |XT | on the bottom. Reproduced from Gupta et al. (2021).

provides an example of a magnitude spectrogram |XT | with its corresponding

wave form in real space. The complex part of the spectrogram is used to infer

the phase Φ as its angle.

Spectrograms are useful as they show how the frequency components change

over time. Additionally, they are useful for deep learning approaches to audio

as they can be fed into convolutional neural networks (CNNs), as described by

Hershey et al. (2017) and Palanisamy, Singhania, and Yao (2020).

Converting from Real to Time-Frequency Space

The Fourier transform provides frequency information over a given time interval.

A spectrogram, on the other hand, is an analysis of frequency over time. To

obtain the spectrogram, one must use a Short-Time Fourier Transform (STFT),

which slides a window along the time axis of a real-space signal, capturing its

frequency information at different overlapping time intervals.

In the discrete case, this involves computing

X[m, k] =
N−1∑
n=0

x[n]w(n−mL) exp(−i
2πkn

N
) (2.7)

= |X[m, k]| exp(iΦ[m, k]) (2.8)

whereby x is a vector representing the discrete signal in real space, m is the

window index, k is the frequency bin index, L is the step size between the start-

ing points of consecutive windows (called the hop size), and N is the window
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size. w(n−mL) is the window function isolating the required segment for anal-

ysis. Note that spectrograms are conventionally plotted with time on the x-axis,

whereby X computed with STFT in Equation 2.7 provides the transpose of the

common visualisation.

|X| determines the magnitude spectrogram and Φ[m, k] = arg(X[m, k]) the

phase of the frequency bin k of the original signal at time m. The function

arg(z) = tan−1( b

a
) = θ (2.9)

maps a complex number z = a + ib with real component a ∈ R and complex

component b ∈ R to its angle θ ∈ (−π, π]. Using the angle, it is possible to

represent z in polar form as z = r(cos(θ) + i sin(θ)) with radius r, providing a

trigonometric interpretation. Using this, Oppenheim (1999) shows that

arg(X[m, k]) = Φ[m, k] (2.10)

holds, i.e., that the angle of the spectrogram is equal to the phase.

Window Functions

The most trivial window function is the boxcar or Dirichlet window, simply a

constant value c ∈ R across the window length N .

wboxcar(n) =

c if 0 ≤ n < N

0 else

(2.11)

Ideally, we want a very small window size to capture the maximal time reso-

lution and a very large number of spectral bins to capture the maximal spectral

resolution. The Heisenberg Uncertainty Principle (HUP), interpreted for signal

processing, states that

∆t ·∆f ≥ 1
4π

(2.12)

holds for window size ∆t and spectral bin size ∆f (Cohen, 1995). This implies

that their product is lower bounded by a constant 1/4π. Thus, STFT is subject to

a time-frequency trade-off.

The boxcar window function from Equation 2.11 has a hard cut-off, which

leads to significant spectral leakage and thus lower spectral resolution. Spectral

leakage occurs when discontinuities at the edges of a window function cause

energy from different frequency components to spread across the spectrum, re-

ducing the accuracy of the frequency representation. To achieve higher spectral

resolution, it is common to use window functions with tails on each end, as they
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Figure 2.6: Visualisation of the boxcar and Hann window functions in black with

the green signal in real space. Reproduced from Sawa, Yamada, and Obata (2022).

reduce leakage, despite leading to a higher ∆t. Throughout this thesis, the scipy

STFT implementation is used in conjunction with the Hann window function

(Virtanen et al., 2020). The Hann window function is defined in Equation 2.13.

Figure 2.6 visualises the difference between the boxcar and Hann window func-

tions.

wHann(n) = 0.5
(

1− cos( 2πn

N − 1)
)

(2.13)

Converting from Time-Frequency to Real Space

If we have access to phase information, we can transform a spectrogram from

time-frequency space into real space using the Inverse STFT (ISTFT). In the dis-

crete case, the ISTFT is computed as

x[n] =
∑
m,k

w(n−mL)X[m, k] exp(i2πkn

N
) (2.14)

with the same variables as in Equation 2.7. Often, we will only have access

to the magnitude spectrogram |X| and will thus not have access to any phase

information. Plugging Equation 2.8 into Equation 2.14, we get

x[n] =
∑
m,k

|X[m, k]| exp(Φ[m, k])w(n−mL) exp(i2πkn

N
). (2.15)

It follows that we need the phase Φ[m, k] to reconstruct the audio signal

using ISTFT. If we only have access to the magnitude spectrogram, we can use

the Griffin-Lim algorithm (Griffin and Lim, 1984) to iteratively approximate the

phase. The idea behind this algorithm is similar to the expectation-maximisation

(EM) algorithm (Moon, 1996), whereby in each iteration t a real-space signal y(t)

is approximated using a current phase estimate Φ(t)
(equivalent to the E-step),
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which is then used to approximate a new phase estimate Φ(t+1)
which better

matches the magnitude spectrogram |X| (equivalent to the M-step). This thesis

uses the librosa (McFee et al., 2015) implementation of Algorithm 2.

Algorithm 2 Griffin-Lim Algorithm (Griffin and Lim, 1984)

Require: Magnitude spectrogram |X[m, k]|, number of iterations Niters, win-

dow length N , hop size L
1: Initialize Φ[m, k](1)

randomly

2: Y [m, k](1) ← |X[m, k]|eiΦ[m,k](1)

3: for t = 1 to Niters do
4: y(t)[n]← ISTFT(Y [m, k](t))
5: Y [m, k](t+1) ← STFT(y(t)[n])
6: Y [m, k](t+1) ← |X[m, k]| Y [m,k](t+1)

|Y [m,k](t+1)|
7: end for
8: y

reconstructed
[n]← ISTFT(Y [m, k](Niters))

Ensure: Reconstructed time-domain signal y
reconstructed

[n]

2.1.3 The Cocktail Party Effect
Auditory environments typically consist of a mixture of sound sources. A com-

mon example is a supermarket, where the auditory environment includes back-

ground music, the clatter of shopping carts, the beeping of tills, and people talk-

ing, among other sounds. Mathematically, we can define this mixed audio signal

m ∈ Rn
as a mixture of sources s1, . . . , sk ∈ Rn

with a mixing function f(·)
such that

m = f(s1, . . . , sk) (2.16)

Often, we can work under the assumption that the mixed signal m is a linear

combination of source signals with added Gaussian noise, such that

f(s1, . . . , sk) ≈
n∑

i=1
αisi + ϵ (2.17)

where α1, . . . , αn ∈ R are scalar mixing coefficients and ϵ ∼ N (0, σ2I) is

additive noise.

Humans are remarkably good at extracting individual sound sources from

mixed signals, a skill that offers clear evolutionary advantages for both survival

and social interaction (McDermott, 2009). This ability is known as the Cocktail

Party Problem (CPP), a term coined by British cognitive scientist Colin Cherry
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(1953). The term refers to cocktail parties, where multiple conversations occur

simultaneously, requiring individuals to focus on a single voice from a mixture

of voices.

Auditory Scene Analysis

The task of organising sounds into perceptually meaningful elements is known

as Auditory Scene Analysis (ASA). Audio sources arrive at the brain after being

converted into electrical signals in the cochlea, a coiled structure receiving vibra-

tions from the ear drum via the ossicles. The brain then processes these electrical

signals into perceived discrete audio streams, sub-consciously approximating a

disentanglement (Bregman, 1994). The field of psychoacoustics studies ASA and

describes different cues the brain uses to perform this task.

Monaural and Binaural Cues

The brain uses monaural and binaural cues for sound localisation. Binaural cues,

such as the interaural time and level differences, are used for horizontal locali-

sation. Monaural cues, such as the Head-Related Transfer Function, an idiosyn-

cratic spectral filter given by the body shaping the signal before it arrives at the

eardrums, are useful for vertical localisation (Musicant and Butler, 1985). Sound

source localisation helps the brain group stimuli into discrete streams, as de-

scribed by the Gestalt principles.

The Gestalt Principles

The brain’s primary organisational ability is described by the Gestalt principles

(Köhler, 1967). These principles are a set of rules that explain how humans per-

ceive stimuli as organised patterns, such as discrete audio streams. They include,

but are not limited to:

• Proximity: Objects that are localised as being physically close to each

other tend to be perceived as a group.

• Similarity: Objects with a similar appearance are perceived as a group.

• Closure: The mind automatically fills gaps when a stimulus is interrupted.

It is plausible that the Gestalt principles could be learned by a universal func-

tion approximator, such as a deep neural network, to perform Computational

Auditory Scene Analysis (CASA).
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Figure 2.7: Visualisation of the Gestalt principles, which work analogously in the

auditory domain. The closure principle can be observed in subfigures (a) and (d),

similarity in (b) and proximity in (c) and (d). Reproduced from Wong (2010).

2.1.4 Audio-Visual Perception
Humans are able to separate audio sources more easily when visual informa-

tion provides prior knowledge about the source decomposition. Neuroscientists,

such as Sams et al. (1991), have shown that the presence of multiple sensory in-

puts neurologically influences audio perception. McGurk and MacDonald (1976)

coined theMcGurk effect, describing a phenomenon which occurs when the audi-

tory component of one speech sound is paired with visual component of another.

In such cases, the visual component can change what is understood given identi-

cal audio clips.
1

Rouger et al. (2007) argue that the presence of visual information

significantly enhances speech perception in patients with hearing impairments.

The human ability to integrate multiple modes and combine this information

into more than the sum of its parts also plays an important role in designing

immersive and satisfying user interfaces (Slater and Wilbur, 1997).

Van Wassenhove, Grant, and Poeppel (2007) argue that temporal synchrony,

the simultaneous occurrence of auditory and visual signals, increases the likeli-

hood of these signals being perceived as originating from the same source. The

integration of multi-modal data is believed to occur in the superior temporal sul-
cus, a brain region specifically responsible for processing multisensory stimuli

(Beauchamp, Nath, and Pasalar, 2010).

In sum, research from many different fields concludes that visual information

is an important factor when making sense of our auditory environment.

1
A compelling example of the McGurk effect can be found here: https://www.youtube.com/

watch?v=2k8fHR9jKVM (accessed August 29, 2024).
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2.2 Computational Audio Source Separation
ASA describes how the human auditory system separates sound sources and

CASA attempts to mimic this. This definition differs from the task of audio source

separation, which does not necessarily attempt to imitate the human biological

process, but rather uses any mathematical approach to estimate a maximally ac-

curate separation of the sources comprising a mixed signal with respect to some

metric.

2.2.1 Independent Component Analysis
Independent Component Analysis (ICA) is an early solution to the CPP. Intro-

duced by Jutten and Herault (1991) and expanded on by Comon (1994), it is a blind

source separation (BSS) approach, separating the signals without prior knowl-

edge on the decomposition. ICA relies on statistical assumptions to separate the

signal into individual components. These assumptions are

• Statistical Independence: The source signals are independent of each

other.

• Non-Gaussianity: At most one of the source signals can be normally dis-

tributed.

• Linearity: The observed mixed signals are linear combinations of the same

set of source signals, such as when recording one auditory scene with an

array of m microphones.

The ICA model for k source signals, n samples per signal and m observed

signals can be expressed as X = AS, where X ∈ Rm×n
is a matrix whose rows

are the observed mixed signals, A ∈ Rm×k
is a mixing matrix and S ∈ Rk×n

is a matrix whose rows are the approximated true sources which comprise the

mixed signals in X . ICA thus operates under the assumption that all m signals

in X are comprised of the same k sources, i.e., each observed mixed signal is a

linear combination of the same components.

The objective of ICA is to find an unmixing matrix W ∈ Rm×m
such that

W ≈ A−1
. Once W is computed, we can approximate the sources as S ≈W X .

Methods for Solving ICA

W can be found using infomax ICA, which was proposed by Bell and Sejnowski

(1995) and is based on the linear infomax principle first suggested by Linsker

(1988). Infomax ICA involves training a neural network to maximise the mutual
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information I(Xin; Xout) between the input layer Xin and the output layer Xout.

By the definition of mutual information as

I(Xin; Xout) = H(Xout)−H(Xout | Xin) (2.18)

where H(·) denotes the entropy, we can maximise the mutual information

I(Xin; Xout) by maximising the entropy of the output H(Xout), as H(Xout | Xin)
is assumed to be constant.

Infomax ICA achieves this with a single-layer neural network maximising the

independence of the signals and relying on the principle that the output signals

are maximally informative if they are maximally independent. The network is

trained using gradient ascent.

The FastICA algorithm, first proposed by Hyvärinen and Oja (1997), pro-

vides a faster approach. FastICA maximises the non-Gaussianity of the esti-

mated sources by maximising kurtosis and negentropy using a fixed-point it-

eration scheme.

2.2.2 Non-Negative Matrix Factorisation
Non-Negative Matrix Factorisation (NMF) is another approach to solving the

CPP. It was introduced by D. D. Lee and Seung (1999) and conceived for disentan-

gling image mixtures. NMF approximates the decomposition of a non-negative

matrix while enforcing a non-negativity constraint on the decomposition. This is

beneficial for mixed signals with an additive nature, such as images and sounds.

Smaragdis (2004) was the first to apply NMF to the domain of audio source sep-

aration.

NMF aims to approximate a given non-negative matrix X ∈ Rm×n
≥0 as the

product of two non-negative matrices W ∈ Rm×r
≥0 and H ∈ Rr×n

≥0 as X ≈W H .

Thereby r ≪ m and r ≪ n should hold, such that W and H have significantly

lower rank than X . r thereby denotes the number of spectral patterns and thus

sources X is decomposed into.

Algorithm 3 shows the procedure for solving the NMF according to D. Lee

and Seung (2000) with a general loss function introduced by Cichocki, Cruces,

and Amari (2011), whereby the ◦ operator denotes element-wise multiplication

(the Hademard product) and powers of matrices are element-wise. Initial esti-

mates W init ∈ Rm×r
≥0 and H init ∈ Rr×n

≥0 can be initialised as random non-negative

matrices. Boutsidis and Gallopoulos (2008) argue that faster convergence is pos-

sible by initialising these matrices using a non-negative double singular value

decomposition (NNDSVD).

Algorithm 3 involves using multiplicative updates in the loop, as suggested

in the original paper. Zou, Hastie, and Tibshirani (2006) later proposed using co-
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ordinate descent as an alternative optimisation technique, leading to faster con-

vergence. The update rule is governed by the β-loss, which is originally proposed

to be the Frobenius norm

Dβ=2(X∥W H) = ∥X −W H∥2
F =

∑
i,j

(X[i, j]− (W H)[i, j])2 . (2.19)

Alternatives include the KL divergence (Kullback and Leibler, 1951)

Dβ=1(X∥W H) =
∑
i,j

(
X[i, j] log X[i, j]

(W H)[i, j] −X[i, j] + (W H)[i, j]
)

(2.20)

as used by Yang et al. (2011) and the Itakura-Saito divergence (Itakura, 1968)

Dβ=0(X∥W H) =
∑
i,j

(
X[i, j]

(W H)[i, j] − log X[i, j]
(W H)[i, j] − 1

)
(2.21)

as used by Févotte, Bertin, and Durrieu (2009). They argue that the Itakura-

Saito divergence correctly captures the semantics of audio and is thus best suited

for this use-case.

Algorithm 3 Non-Negative Matrix Factorization (NMF) using multiplicative up-

dates. Original algorithm adapted from D. Lee and Seung (2000) with general

β-loss adapted from Cichocki, Cruces, and Amari (2011).

1: Input: Non-negative matrix X ∈ Rm×n
≥0 , number of sources r ∈ N, initial

estimates W init ∈ Rm×r
≥0 and H init ∈ Rr×n

≥0 , β ∈ {0, 1, 2}
2: Output: Non-negative matrices W ∈ Rm×r

≥0 and H ∈ Rr×n
≥0

3: H ←H init

4: W ←W init

5: repeat
6: H ←H ◦

(
W T (X◦(W H)β−2)

W T W H

)
7: W ←W ◦

((X◦(W H)β−2)HT

W HHT

)
8: until convergence

NMF can be used for separating audio sources by first converting the real

space signal into time-frequency space to obtain spectrogram X using STFT,

then performing the separation on the magnitude spectrogram |X|. NMF is used
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to obtain W and H and the original mixed signal is approximated as |X| ≈
W H . Thereby W is the basis matrix with column vectors w1, . . . , wr ∈ Rm

≥0
representing spectral bases, such as percussive patterns, chords or other distinct

sounds that comprise the original signal |X|. H is the coefficient matrix with

row vectors hT
1 , . . . , hT

r ∈ Rn
≥0 acting as weights to w1, . . . , wr (D. D. Lee and

Seung, 1999). Thus, the sources Ŝ1, . . . , Ŝr ∈ Rm×n
≥0 are approximated as the

outer product

Ŝi ≈ wih
T
i . (2.22)

This provides a blind source separation under the assumption that |X| is a

linear combination of r spectral bases.

2.2.3 Evaluation
Signal Decomposition

The most commonly used metrics for measuring audio source separation are

described by Vincent, Gribonval, and Févotte (2006). They show that a recon-

structed source signal ŝ in real space can be decomposed into

ŝ = starget + einterf + enoise + eartif (2.23)

where starget is best possible separated source, einterf are interferences from

other signals, and enoise, eartif are noise and artefacts respectively, which are intro-

duced during the separation process. This implies that the reconstructed source

signal ŝ consists entirely of the sum of the target, the interference from other sig-

nals, random noise and artefacts. This allows for computing metrics measuring

specific aspects of the reconstruction. The terms in Equation 2.23 can be com-

puted using projection operators on ŝ. Note that s ̸= starget, as starget includes a

permitted minimal degree of distortion.

Metrics

The Signal-to-Distortion Ratio (SDR) measures the difference between the dis-

tortion present in the approximated source ŝ. It is computed as

SDR := 10 log10
∥starget∥2

∥einterf + enoise + eartif∥2 (2.24)

where the ∥s∥2
denotes the squared L2-norm of the signal in real space and

is called the power of a signal. The SDR thus provides a solid and widely-used

general measure of separation ability, taking into account all three error sources.
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The other three note-worthy ratios only take exactly one of the error sources

into account. They are the Signal-to-Interference Ratio (SIR)

SIR := 10 log10
∥starget∥2

∥einterf∥2 (2.25)

the Signal-to-Artefact Ratio (SAR)

SAR := 10 log10
∥starget + einterf + enoise∥2

∥eartif∥2 (2.26)

and finally the Signal-to-Noise Ratio (SNR)

SNR := 10 log10
∥starget + einterf∥2

∥enoise∥2 . (2.27)

The metrics are measured in dB and defined on [−∞, L] for upper limit L ∈
R>0 imposed by the physical properties of sound signals. Higher values indicate

better performance and a metric at 0 dB implies that the signal power equals the

power of the measured interference. The code for this thesis uses the mir eval

library to compute the SDR, SIR and SAR metrics (Raffel et al., 2014). This li-

brary additionally computes the Image-to-Spatial-Distortion Ratio (ISR), which

measures the preservation of the target source.

2.2.4 Deep Learning Approaches
There have been numerous attempts since since the early 2010s to use deep learn-

ing for audio source separation. Huang et al. (2014) use a recurrent neural net-

work (RNN) to predict a soft separation mask, achieving a mean SDR of 2.3 dB

on a singing voice dataset and thus outperforming both NMF and ICA. Uhlich,

Giron, and Mitsufuji (2015) achieve a slightly higher SDR using a fully connected

neural network to extract individual instruments from an orchestral recording,

training on a specific instrument only and thus incorporating prior information.

Nugraha, Liutkus, and Vincent (2016) use a pipeline consisting of deep neural

networks and the EM algorithm on multi-channel audio files, where each chan-

nel corresponds to a recording from one microphone. This approach leverages

spatial information, much as humans do using the Gestalt principles. They report

an SDR of 7.72 dB using the EM approach with NMF and 13.25 dB with the EM-

DNN combination on the six-channel CHiME-3 voice dataset (Barker et al., 2015).

Similar results are reported by Durrieu et al. (2009), who utilise a NMF-based

stochastic model which is able to exploit the spatial nature of their stereophonic

dataset. Chandna et al. (2017) use CNNs on monaural spectrograms to construct

a low-latency model for extracting instruments. The proposed model requires
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less than 200 ms to extract different stems with a mean SDR of 2 dB. They note

significant variations in separation performance depending on the instrument.

The AI boom triggered rapid advancements in the field with the sudden fea-

sibility of very deep neural networks in the late 2010s. This coincided with the

introduction of the MUSDB18 dataset by Rafii et al. (2017), becoming the bench-

mark for many uni-modal source separation architectures.

A hybrid approach combining real and time-frequency representations is pre-

sented by Défossez (2021). They employ two symmetric convolutional U-Net ar-

chitectures (Ronneberger, Fischer, and Brox, 2015), one for the spectrogram and

one for for the real-space representation. The bottlenecks and the output of both

models are concatenated to obtain the final separation. Kim et al. (2021) propose

KUIELab-MDX-Net, which seeks to balance performance and computational cost

by training one small model per source rather than a single large model. They

report a significant decrease in computational demands with only a negligible de-

crease in SDR when compared to other, more computationally demanding mod-

els. CWS-PResUNet (H. Liu, Kong, and J. Liu, 2021) utilises a channel-wise sub-

band (CWS) approach to reduce the required computational resources, enabling

deeper networks. Kong et al. (2021) point out that all state-of-the-art approaches

to music source separation operate solely on magnitude spectrograms. This ne-

cessitates phase approximation using Algorithm 2 during reconstruction, which

can degrade performance. They propose ResUNetDecouple+, predicting complex

segmentation masks using a very deep residual U-Net architecture.

The most successful model in terms of SDR on the MUSDB18 dataset is the

BSRNN architecture proposed by Luo and J. Yu (2023). BSRNN splits a signal into

multiple frequency bands, thus exploiting intrinsic musical characteristics. The

performances of the reported models are discussed and compared in Section 5.2.

2.2.5 Generative Models for Audio
Introduced by Van Den Oord et al. (2016) at DeepMind, WaveNet is the seminal

architecture for audio generation. It is designed for text-to-speech applications

and significantly outperformed the state-of-the-art models at the time of publi-

cation. It takes raw audio as input, employing convolutional layers and finally

a softmax layer to output a categorical distribution over the next audio sample

value. Temporal order is enforced by conditioning sample x̂[n] only on past sam-

ples x̂[0 ≤ n′ < n]. WaveNet uses dilated convolutions to increase the recep-

tive field without substantially increasing the number of parameters. Dilation

involves skipping samples in both directions with a step size determined by a

dilation parameter d(l) ∈ N for a given layer l.
Inspired by WaveNet operating in real space, Stoller, Ewert, and Dixon (2018)

propose the Wave-U-Net, a one-dimensional adaptation of the U-Net (Ronneberger,
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Fischer, and Brox, 2015). The U-Net is a CNN originally proposed for pixel-wise

medical image segmentation, but has been shown to perform exceptionally well

in many domains (Williams et al., 2024). It derives its name from its symmetric

encoder-bottleneck-decoder structure featuring copy-and-crop skip connections

from each encoder block to the corresponding decoder block. Each block consists

of convolutional and max-pooling layers. By encoding and then decoding an in-

put signal, the U-Net captures context and features at multiple scales, allowing

for powerful representations. The Wave-U-Net is specifically taylored to audio

source separation, taking an audio mixture in real space as input and outputting

all k sources in real space directly.

Non-Audio Signal Separation

Webster and J. Lee (2023) propose a self-supervised approach to BSS using an

autoencoder with multiple encoders, a concatenated latent space and a shared

decoder. The model is trained using a linear combination of a reconstruction loss

and additional regularisation losses, defined as follows:

ℓtotal = ℓrecon. + λ1ℓmixing + λ2ℓzero recon. + λ3ℓz (2.28)

where ℓrecon. is a reconstruction loss (such as cross-entropy or mean squared

error) and ℓmixing is the separation or sparse mixing loss that encourages the mix-

ing weights in the decoder to be sparse, ensuring that each encoder specialises

on a distinct feature subspace. The term ℓzero recon. encourages a zero-input to be

decoded as a zero-output and ℓz is a simple L2 regularisation that penalises large

encoder outputs. The parameters λi are the respective coefficients used to weight

the influence of each term.

The sparse mixing loss is given by

ℓmixing =
∑
i ̸=j

αi,j∥W i,j∥1 (2.29)

where W i,j is the block of the weight matrix W that corresponds to the in-

teraction between the latent spaces zi and zj of different encoders (i.e., i ̸= j).

The term ∥ · ∥1 denotes the L1 norm and αi,j are scaling factors normalising the

contribution of each block W i,j based on its size. This loss function encourages

the decoder to maintain non-zero weights primarily in the sections of the weight

matrix W that do not mix the latent spaces from different encoders. The authors

report promising results extracting respiratory signals from electrocardiogram

(ECG) and photoplethysmography (PPG) signals, as well as separating overlap-

ping shapes in a toy dataset. The toy dataset and the separation performance is

visualised in Figure 2.9.
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Figure 2.8: Visualisation of the self-supervised approach suggested by Webster

and J. Lee (2023). Training occurs by concatenating the latent spaces of each

encoder, while inference works by masking out all but one encoder. Reproduced

from Webster and J. Lee (2023).

Figure 2.9: Toy problem of separating a circle and a triangle provided by Webster

and J. Lee (2023). The dead encoder is automatically recognised as being superflu-

ous and outputs a fully black signal. Reproduced from Webster and J. Lee (2023).
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Figure 2.10: BASIS mixture separation performance on CIFAR-10 (Krizhevsky

and G. Hinton, 2009). BASIS separation is denoted as Langevin Dynamics + Noise
Conditioning. Reproduced from Jayaram and Thickstun (2020).

Jayaram and Thickstun (2020) propose the Bayesian Annealed Signal Source

separation (BASIS) algorithm for separating mixed image sources. Rather than

directly learning the separation function f−1(·) from Equation 2.16, the authors

use noise-annealed Langevin dynamics with deep generative priors to sample

from the distribution of sources given the observed mixture p(s1, . . . , sk | m).
Here, m is the mixed signal and s1, . . . , sk are the k sources.

Computing the posterior over sources directly is challenges because, accord-

ing to Bayes’ rule, it requires computing the partition function p(m). Instead,

the authors use noise-annealed Langevin dynamics to sample from the posterior

p(s1, . . . , sk | m). Langevin dynamics (Welling and Teh, 2011) is a technique

that allows for sampling from a posterior distribution

p(θ | x1, . . . , xn) ∝ p(θ)
n∏

i=1
p(xi | θ). (2.30)

over model parameters θ given data x1, . . . , xn. We can do this by construct-

ing a Markov chain using

∆θ(t) = ϵt

2∇ log p(θ(t) | x1, . . . , xn) +√ϵtηt (2.31)

= ϵt

2

(
∇ log p(θ(t)) +

n∑
i=1
∇ log p(xi | θ(t))

)
+√ϵtηt (2.32)

where ηt ∼ N (0, ϵt) is Gaussian noise with exploration hyperparameter ϵt.

This introduces the stochasticity necessary for escaping local optima. The update

rule is given by

θ(t+1) ← θ(t) + ∆θ(t). (2.33)

24



By assuming a Gaussian likelihood function

pγ(m | s1, . . . , sk) = N (m | f(s1, . . . , sk), γ2I) (2.34)

with f(·) as in Equation 2.17, it is possible to use this approach to generate

samples from p(s1, . . . , sk | m). To do this, one must plug Equation 2.31 into

Equation 2.33 and plug in the values from the source separation, where S =
{s1, . . . , sk} ≡ θ denotes the parameters and m the observed data, to construct

a Markov chain with the update rule

S(t+1) ≡ S(t) + ϵt

2∇S log pγ(S(t) |m) +√ϵtηt (2.35)

= S(t) + ϵt

2∇S
(
log p(S(t)) + log pγ(m | S(t))

)
+√ϵtηt (2.36)

= S(t) + ϵt

2∇S

(
log p(S(t)) + 1

2γ2∥m− f(S(t))∥2
)

+√ϵtηt. (2.37)

The prior p(S) can be modelled as a deep generative neural network, such

as a variational autoencoder (VAE) (Diederik P Kingma and Welling, 2013) or

Glow (Durk P Kingma and Dhariwal, 2018). The gradient of the prior∇Sp(S) is

thereby easily computed using autodiff (Paszke et al., 2017).

Expressing the source separation problem within a Bayesian framework sep-

arates the tasks of source separation and source generation, allowing for the use

of existing generative models without modifying their architecture. Jayaram and

Thickstun (2020) achieved state-of-the-art performance on the MNIST dataset

(LeCun et al., 1998) and strong performance on CIFAR-10 (Krizhevsky and G.

Hinton, 2009) and LSUN (F. Yu et al., 2015). A visual example of the performance

on the CIFAR-10 dataset can be found in Figure 2.10.

Directly influenced by this work, Frank and Ilse (2020) attempt a similar ap-

proach for audio source separation. They also use Langevin dynamics with deep

generative priors to sample from the source posteriors in the time domain di-

rectly using a WaveNet. The authors conclude that this approach performs well

in a toy scenario, but struggles with real music data due to high in-class vari-

ability and complexity. Additionally, the deep generative priors struggle with

out-of-class data, making real-world deployment infeasible.

2.3 Audio-Visual Integration

2.3.1 Multi-modal Feature Extraction
Ngiam et al. (2011) argue that uni-modal feature extraction using deep neural

networks can be improved by introducing an adjacent modality during training.
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They also argue that shared representations across different modalities can be

learned, which can be evaluated by training a classifier on one modality (e.g.,

audio) and evaluating it on a different modality (e.g., video).

To address the question of how deep learning models should integrate multi-

ple modalities, Shi, Paige, Torr, et al. (2019) draw insights from the way humans

integrate information from multiple sensory perceptions, similar to the heuristic

discussed in Section 1.2. They argue that a successful multi-modal generative

model should possess the following four abilities:

• Latent Factorisation: The model should implicitly factor the latent space

into a subspace for entirely private features and an entirely separate sub-

space for shared features.

• Coherent Joint Generation: When sampling from the generative model

across modalities, the samples should be semantically consistent amongst

each other.

• CoherentCross-Generation: The model should be able to condition sam-

ples of one modality on another modality, thereby preserving the under-

lying commonality between them.

• Synergy: The model should facilitate learning for individual modalities

through the integration of multi-modal observations.

They propose a multi-modal VAE (MMVAE), which uses a mixture-of-experts

(MoE) approach to combine the latent representations from different modalities.

Each expert is a VAE trained on a different modality and the expert for modality

m learns a posterior qϕm(z | xm). The MoE approach then involves computing

the posterior over all modalities as

qΦ(z | x1, . . . , xM) =
M∑

m=1
αmqϕm(z | xm) (2.38)

with mixing weights αm. This approach allows for sampling from the poste-

rior qΦ(z | x1, . . . , xM) without requiring access to all modalities. Consequently,

it enables the generation of samples in one modality that are consistent with the

parameters of the other modalities.

2.3.2 Audio-Visual Source Separation
Having discussed source separation and multi-modal integration, this section

explores the literature at the intersection between both fields. Zhao, Gan, Rou-

ditchenko, et al. (2018) introduce PixelPlayer, a system using self-supervised
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learning to perform pixel-wise segmentation of each frame based on each pixel’s

likelihood of generating sound. They combine this approach with a U-Net to

obtain an average SDR of 6.05 dB on the MUSIC dataset introduced by them.

Gao and Grauman (2019) propose a method for learning object-level sounds

from unlabeled performance videos, leveraging video data to disentangle sounds

from a mixture. They concatenate the learned features of the detected sound

source in a video, extracted by a ResNet, with the bottleneck of deep CNN on

the spectrogram in order to obtain a separation mask isolating the given sound

source in the mixed spectrogram.

To address the complex interaction between visual and auditory informa-

tion, Chatterjee et al. (2021) introduce an Audio Visual Scene Graph Segmenter

(AVSGS). AVSGS uses a deep neural network to segment the visual structure of

a scene into a graph, the embedding of which is combined with the latent space

of a spectrogram encoder and input into a decoder.

Islam et al. (2024) use a meta-consistency driven time-test adaptation scheme

for video-aided music source separation. This approach enables a pre-trained

model to quickly adapt to unseen data. The authors suggest that this method is

robust for visually guided audio source separation, as it does not rely on fixed

weights and allows for efficient parameter updates through a meta-learning ap-

proach. They achieve an SDR of 12.81 dB on the MUSIC dataset, outperforming

all previously discussed approaches. As of August 2024, this seems to be the best

reported result on any audio-visual dataset. The other results are reported on

and discussed in Section 5.2.

2.4 Video Feature Extraction
This thesis aims to identify suitable methods for extracting rich and meaning-

ful features from video. These features are required for integrating video into a

separation algorithm. Therefore, this section is dedicated to evaluating potential

methods for video feature extraction.

The introduction of the RNN with long short-term memory (LSTM) by Hochre-

iter and Schmidhuber (1997) enabled the capture of long-term dependencies in

sequences, such as videos. Many models have since surpassed this approach

in terms of action recognition. Simonyan and Zisserman (2014) propose a two-

stream architecture using two 2-dimensional CNNs, one capturing the spatial

information, the other capturing temporal information in order to predict opti-

cal flow. Optical flow describes the per-pixel movement within a video.

Tran et al. (2015) propose using a 3-dimensional CNN for feature extraction,

arguing that a 3× 3× 3 kernel, combined with a linear classifier, achieves state-

of-the-art video classification results with a conceptually simpler approach and
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faster inference. Carreira and Zisserman (2017) emphasise the importance of

pre-training models on a large dataset before fine-tuning them for specific tasks.

Additionally, they suggest a 3-dimensional two-stream architecture.

A newer approach to optical flow estimation is outlined by Teed and Deng

(2020). They propose Recurrent All-Pairs Field Transforms (RAFT), combining

a feature encoder that produces a per-pixel feature map for each frame with a

4D correlation volume that stores the correlation of all pixel pairs across two

frames, along with a convolutional gated recurrent unit (GRU) to iteratively re-

fine an initial flow estimate. The authors claim that RAFT achieves superior re-

sults on several noteworthy optical flow estimation benchmarks, the details of

which exceed the scope of this thesis.

2.5 Synthesis
This literature review provides an overview of relevant developments in audio

source separation, focusing on both traditional and state-of-the-art approaches.

Early seminal methodologies, such as ICA and NMF, are discussed. The re-

view also highlights more recent advancements using deep neural networks and

generative models, which have expanded the possibilities in source separation.

Nonetheless, none of these approaches have managed to achieve an SDR of more

than 15 dB on real-world data. Consequently, no approach manages to achieve

a source separation that could be considered to be true separation. Multi-modal

integration is also discussed, particularly the incorporation of visual data to en-

hance audio separation, reflecting a growing trend in the field.

The main insights from the literature review provide the foundation for the

subsequent chapters. NMF will be used as a baseline method. The self-supervised

method using a multi-encoder AE suggested by Webster and J. Lee (2023) will be

one of the evaluated methods, as it offers an elegant solution to a complicated

problem. BASIS separation (Jayaram and Thickstun, 2020) will be another, align-

ing with the original goal of using deep generative models. BASIS separation

allows for using any generative model that can compute the probability of data

and shows promise in the 2D image domain. Furthermore, both RAFT (Teed

and Deng, 2020) and the use of a 3D ResNet will be assessed for video feature

extraction.
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Chapter 3

Methodology

3.1 Datasets and Pre-Processing
All datasets are subject to a 70/20/10 split, where 70% of the data is allocated to

the training set, 20% to the validation set for hyperparameter tuning, and the

remaining 10% is reserved as the test set for the final evaluation.

All audio data is preprocessed by saving the monaural magnitude spectro-

grams |XT | as png and the phase ΦT
as a numpy array in a npy file. The MUSDB18

and URMP datasets provide binaural audio with two separate audio streams per

track. The monaural audio stream is constructed by taking the mean of both

streams. The magnitude spectrograms |XT | are stored in full scale but down-

scaled to 64× 64 pixels at runtime to reduce the computational load. All data is

preprocessed and saved as 5-second chunks.

3.1.1 Toy
For establishing a proof of concept, a toy dataset is utilised, consisting of sine, tri-

angle, pulse and sawtooth waves. The waves are combined to form mixtures by

simply adding the waveforms, weighted by a coefficient α = 1/k for k sources.

Only one parameter, the frequency f ∈ [200, 1500], is used to create each data

point of a given wave. The waves have a sampling rate of 16 kHz. The scipy.signal

library is used to generate the toy data. The toy dataset is visualised in Figure

3.1.

3.1.2 MUSDB18
The Music Database (MUSDB18) dataset (Rafii et al., 2017) is utilised for the uni-

modal experiments on real-life data. This dataset consists of pop songs split into

the four categories vocals, bass, drums and other. The original sampling rate of
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Figure 3.1: Downscaled sample from the toy dataset consisting of sine, triangle,

pulse and sawtooth waves. The saved images, which can be converted back into

real space audio, are of size 1025× 128 and are re-scaled to 64× 64.

Figure 3.2: Downscaled sample from the MUSDB18 dataset (Rafii et al., 2017).

The saved images are of size 1025× 384 and are re-scaled to 64× 64.
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44100 Hz is reduced to 22050 Hz in order to further reduce the computational

load. This new sampling rate is lower than the Nyquist rate and the signal is

therefore not perfectly reconstructed. Nonetheless, it suffices for being obviously

recognisable. A sample from the preprocessed MUSDB18 dataset can be seen in

Figure 3.2.

3.1.3 URMP
The University of Rochester Multitrack Classical Music Performance (URMP)

dataset (Li et al., 2018) is used for audio-visual integration. This dataset contains

44 data points, each consisting of a chamber music performance, which includes

the video of all musicians and the audio generated by each individual. The repre-

sented instruments are violin, violoncello, trumpet, saxophone, trombone, flute,

oboe, cello, horn and viola. As with the MUSDB18 dataset, the sampling rate is

reduced from 44100 Hz to 22050 Hz.

The videos are of size 1080 × 1920 and have a frame rate of 30 frames per

second (fps). The data is preprocessed by first slicing the video and corresponding

audio files into five second chunks. A data point consisting of k sources is then

converted into

(
k
2

)
pairs, each using the same video, effectively re-framing the

dataset to as k = 2. The frame rate is reduced to 15 fps, which suffices for

recognising movement.

Finally, the height of each video is cropped to only retain pixels from index

500 to 900 in order to avoid processing unnecessary (i.e., stationary) elements.

The video is then converted to a tensor V ∈ Rc×h×w×T
with c = 3 channels,

height h, width w and T frames. Finally, the frames are re-shaped to 128× 128
pixels.

(a) The original 1080 ×
1920 frame.

(b) The non-moving parts

of the image are removed.

(c) The pruned frame is re-

shaped to 128×128 pixels.

Figure 3.3: The video frame pre-processing pipeline from left to right.

3.1.4 MUSIC
The Multimodal Sources of Information for Contextual Understanding (MUSIC)

dataset (Zhao, Gan, Rouditchenko, et al., 2018) is the most widely used dataset
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for audio-visual source separation. It consists of a collection of video clips featur-

ing individuals playing various musical instruments. The data is extracted from

YouTube.

This dataset was not used for the experiments in this thesis. Using this dataset

would require additional pre-processing, appropriate for future work, as described

in Section 5.3.

3.2 Proposed Methods
In this section, the different approaches that will later be evaluated in Section 4

are described. For simplicity, all models are limited to performing experiments

on k = 2 sources by re-mixing the stems within each dataset.

3.2.1 Modified BASIS
This thesis proposes a modified BASIS approach, hereafter referred to as Modified

BASIS, which is adapted from the BASIS separation method described by Jayaram

and Thickstun (2020). Let X represent the space of all vectors x ∈ Rn·m
such

that xi ∈ [0, 1] for all i ∈ 0, . . . , n · m. This defines the space of all flattened

magnitude spectrograms |XT | ∈ Rn×m
. Our BASIS approach involves using

Langevin dynamics to sample from the posterior p(s1, . . . , sk | m) over the

flattened sources in time-frequency space s1, . . . , sk ∈ X given a flattened mixed

signal in time-frequency space m ∈ X .

Thus, the audio source separation problem is treated as an image separation

problem on spectrograms. Instead of using Glow (Durk P Kingma and Dhari-

wal, 2018) or NCSN (Song, Garg, et al., 2019) as in the original paper, Modified

BASIS uses VAEs (Diederik P Kingma and Welling, 2013) as generative models

for computing the priors. This is a novel approach and potentially offers a sig-

nificantly reduced computational cost when compared to the more expensive

models used by Jayaram and Thickstun (2020). Our modified BASIS approach is

summarised in Algorithm 11. The notation in this algorithm involves concate-

nating the sources and the latent vectors into one long vector x with which a

Markov chain is constructed. The mixture function g(x) is thereby overloaded

as

g(x) = 1
k

k∑
i

si s. t. s1, . . . , sk ← extract(x). (3.1)

32



Algorithm 4 Modified BASIS Separation, adapted from Jayaram and Thickstun

(2020)

Require: m ∈ X , {σi}L
i=1, δ ∈ R, T ∈ N

1: Sample s1, . . . , sk ∼ Uniform(X )
2: Sample z1, . . . , zk ∼ N (0, 1)
3: Let x(1) ← s1 ⊕ z1 ⊕ · · · ⊕ sk ⊕ zk

4: for i = 1 to L do
5: ηi ← δ · σ2

i /σ2
L

6: for t = 1 to T do
7: Sample ϵt ∼ N (0, I)
8: u(t) ← x(t) + ηi∇x log pσi

(x(t)) +
√

2ηiϵt

9: x(t+1) ← u(t) − ηi

σ2
i
(m− g(x(t)))

10: end for
11: end for

The original BASIS involves using a deep generative model to compute the

gradient of log p(x). The VAEs provide an approximate posterior

qϕ(zi | si) = N (zi | µ, diag(σ2)) (3.2)

with

f enc(s) = ϕ = ⟨µ, log σ2⟩ (3.3)

as well as a likelihood

pθ(s | z) (3.4)

which we can sample from using the decoder f dec
. We also have a standard

normal Gaussian prior over the latent space

p(z) = N (z | 0, I). (3.5)

A possible approach to approximating log p(s1, . . . , sk) with a VAE involves

using the evidence lower bound (ELBO) and setting

x = s1 ⊕ · · · ⊕ sk. (3.6)

By definition of the KL diversion (Kullback and Leibler, 1951) between the

approximate posterior qϕ(z | x) and the true posterior p(z | s), we can derive
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DKL(qϕ(z | s)∥p(z | s)) = Eqϕ(z|s)

[
log qϕ(z | s)

p(z | s)

]
(3.7)

= Eqϕ(z|s)

[
log qϕ(z | s)p(s)

p(z, s)

]
(3.8)

= Eqϕ(z|s) [log p(s)] + Eqϕ(z|s)

[
log qϕ(z | s)

p(z, s)

]
(3.9)

= log p(s)− Eqϕ(z|s)

[
log p(z, s)

qϕ(z | s)

]
(3.10)

= log p(s)− L(ϕ, s) (3.11)

It follows that

L(ϕ, s) = log p(s)−DKL(qϕ(z | s)∥p(z | s)) (3.12)

and we have thus derived the ELBO L(ϕ, s). As DKL ≥ 0 always holds, we

know that

log p(s) ≥ L(ϕ, s) (3.13)

must hold. While the ELBO is useful for training a VAE, using it as an approx-

imation for log p(s) in Algorithm 11 yields overwhelmingly noisy results and is

thus not further considered.

An alternative approach involves sampling from both the sources s1, . . . , sk

as well as a corresponding latent vector for each source z1, . . . , zk. Thereby the

log prior becomes a log p(s1, . . . , sk, z1, . . . , zk). This can be decomposed as

log p(s1, . . . , sk, z1, . . . zk) = log p(s1, . . . , sk | z1, . . . zk) + log p(z1, . . . zk)
(3.14)

We can then approximate p(s1, . . . , sk | z1, . . . zk) by first sampling

ŝj ∼ f dec

j (zj) (3.15)

then defining

pσi
(s | zj) = N (s | ŝj, σ2

i I) (3.16)

and finally computing

log pσi
(s1, . . . , sk | z1, . . . zk) =

k∑
j=1

log pσi
(sj | zj). (3.17)
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We can then compute log p(z1, . . . , zk) as

log p(z1, . . . , zk) =
k∑

j=1
log p(zj) (3.18)

=
k∑

j=1
logN (zj | 0, I). (3.19)

The gradient

∇ log pσi
(s1, . . . , sk, z1, . . . zk) (3.20)

can then be computed using autograd. In Algorithm 11, this approach in-

volves setting

x = s1 ⊕ z1 ⊕ · · · ⊕ sk ⊕ zk. (3.21)

The experiments are performed with hyperparameters set to δ = 2 × 10−5
,

L = 10, T = 100, σ1 = 0.1 and σL = 1 whereby σ1, . . . , σL are logarithmically

spaced with base 10. These hyperparameters are identical to the ones used by

Jayaram and Thickstun (2020), as the TPE fails to find superior hyperparameters

on the new domain. The VAEs f1, . . . , fn used in the equations above are trained

on only one data class each, i.e., one type of stem. E.g., operating on the toy data,

VAE f1 is trained on sine, f2 on sawtooth, f3 on square and f4 on triangle waves.

This approach of training a model per class rather than a single, large model, is

inspired by Kim et al. (2021).

Noise Conditioning

The models pσi
(s | z) describe the approximated probability distribution over

sources s perturbed by noise level σi. The original paper finetunes the model

fj for each noise level σi by utilising a transfer learning approach with data for

each noise level being perturbed as s′ = s + ϵ with noise ϵ ∼ N (0, σ2
i I). In

Section 4, two BASIS versions will be tested:

1. BASIS, using a single model for all σ1, . . . , σL.

2. BASIS Finetuned, using a different model fσi
per σi, where each model fσi

is finetuned on perturbed data with noise given by ϵ ∼ N (0, σ2
i I).
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VAE Architecture

A Tree-structured Parzen Estimator (TPE), as proposed by Bergstra et al. (2011),

was used as a guideline to select model architectures and hyperparameters. A

TPE works by iteratively fitting one Gaussian Mixture Model (GMM) l(θ) to

the set of hyperparameters that yield the best 20% of objective values (i.e., the

greatest mean SDR on the validation set) and a second GMM g(θ) to the set of

hyperparameter-sets which lead to the objectively worse 80%. For each subse-

quent iteration, the TPE selects hyperparameters

θ(t+1) = arg max
θ

l(θ)
g(θ) (3.22)

Thus, the hyperparameters are iteratively selected in order to be similar to

the previously successful samples while remaining dissimilar to those that were

previously unsuccessful. The optuna library (Akiba et al., 2019) provides the im-

plementation used to compute the TPE within the scope of this thesis.

The VAE fitted to the toy data consists of a symmetric encoder and decoder

architecture, featuring three convolutional layers and two fully connected layers

in the encoder (one for µ, one for log σ2
), with one fully connected and three

transposed convolutional layers on the decoder. The number of learned features

increases in each subsequent layer of the encoder, with channels progressing

from 1 in the input layer to 4, 8 and then 16. This is reversed in the decoder. A

kernel of size 3 for all layers and a stride of 1 ensures sufficiently detailed feature

extraction. MSE loss is used as the reconstruction loss.

The architecture of the MUSDB18 model is similar with two differences. Firstly,

it features an additional convolutional layer on the encoder and transposed con-

volutional layer on the decoder with 32 learned features to accommodate the

increased data complexity. Secondly, its latent space is larger. The latent space

sizes are z ∈ R8
for the toy data and z ∈ R32

for MUSDB18.

3.2.2 AE-BSS
This approach is adapted directly from Webster and J. Lee (2023). AE-BSS involves

k′
concurrent encoder networks, each encoding the same input signal into a dif-

ferent deterministic latent representation zi. These latent representations are

then concatenated as z = z1 ⊕ · · · ⊕ zk′ and fed into a single decoder network

in order to obtain the reconstructed signal x̂ = f dec(z). This architecture is vi-

sualised in Figure 2.8. The training and inference occur as described in Section

2.2.5. Webster and J. Lee (2023) argue that this method will only learn to utilise as

many encoders as there are sources, leading to superfluous dead encoders. This

thesis does not test this and sets k = k′
.
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The evaluation uses a kernel size of 7, a concatenated latent space of size 196,

symmetrical convolutional encoders and decoder of depth 5 with 24, 48, 96, 144

and 196 channels. The models were trained on a batch size of 64. Interestingly, the

results in Figure 2.8, published by Webster and J. Lee (2023), are only reproducible

with this specific batch size.

The hyperparameters include the use of a group norm, L1 loss as the separa-

tion norm, weight mixing terms λmixing = 0.5, λzero recon. = 0.01 and λz = 0.01. A

weight decay of 5× 10−5
is applied and z ∈ R196

. Training was conducted with

a learning rate of η = 0.001. These hyperparameters were adapted directly from

Webster and J. Lee (2023), as the TPE failed to find superior hyperparameters.

3.2.3 AE-BSS Linear
An alternative AE-BSS approach is evaluated, in which instead of concatenating

z = z1 ⊕ · · · ⊕ zk and using a single decoder, a separate decoder per encoder is

used. This means that the concatenation of the latent space does not occur, and

the sparse mixing loss ℓmixing from Equation 2.29 is ignored. Outputs x̂1, . . . , x̂k

are obtained and then used to reconstruct

x̂ =
k∑

i=1
αix̂i (3.23)

with mixing coefficients αi = 1/k. This approach operates under a linear

assumption that holds in the used data. This method will be referred to as AE-
BSS Linear.

3.2.4 Modified BASIS with Video
The intuition behind incorporating visual information lies in evaluating the fea-

sibility of a given separation and using this to guide the separator in a more

profitable direction. The proposed method involves training a binary classifier

to predict the Bernoulli-distributed random variable χ, which determines the

joint probability of the sources being generated by events visible in the video V .

p(χ = 1 | s1, . . . , sk) = p(V , s1, . . . , sk) (3.24)

Let S = {s1, . . . , sk} and Z = {z1, . . . , zk} for simpler notation. If we can

compute χ, we can, instead of sampling from Equation

p(S,Z) = p(S | Z)p(Z) (3.25)

as in Algorithm 11, sample from
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p(S,Z, χ = 1) = p(S | Z)p(Z)p(χ = 1 | S). (3.26)

Thus, incorporating video into the equation simply involves evaluating this

additional term using a classifer network and setting

x = s1 ⊕ z1 ⊕ · · · ⊕ sk ⊕ zk ⊕ χ (3.27)

in Algorithm 11.

Video Gradient Weighting

The gradient of the logarithm of Equation 3.26 is computed as

∇x log p(S,Z, χ = 1) = ∇x log p(S | Z) +∇ log p(Z) +∇x log p(χ = 1 | S)

(3.28)

=
k∑

j=1
∇x logN (sj | ŝj, σ2

i I) +∇x logN (zj | 0, I) +∇xp(χ = 1 | S) (3.29)

=
k∑

j=1

∑
l

∇x logN (sj[l] | ŝj[l], σ2
i ) +

∑
m

∇x logN (zj[m] | 0, 1) +∇xp(χ = 1 | S).

(3.30)

As can be seen in Equation 3.29, the first two terms in Equation 3.28 consist of

the sum over the terms’ dimensionality, which can be substantial. It follows that

the first two terms tend to be of larger absolute value (as computations occur in

log space) and thus have more influence on the gradient by orders of magnitude.

This can be balanced out by introducing a weight β ∈ R>0 and then replacing

the gradient of the actual score function with

∇x log p(S | Z) +∇x log p(Z) + β∇x log p(χ = 1 | S). (3.31)

Model Architecture for Predicting χ

Let V be the space of all RGB (i.e., 3-channel) video tensors V ∈ R3×h×w×T
. The

model consists of three sub-models:

• A 2-dimensional convolutional encoder f2D(s1, . . . , sk) = ⟨µ1, log σ2
1⟩.

• A 3-dimensional convolutional encoder f3D(T ) = ⟨µ2, log σ2
2⟩ for some

tensor T ∈ Rc×h×w×T
with c channels and T frames.
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• A fully connected network fF C(z) = χ̂.

Inference occurs by first passing our data through both encoders and then

sampling

z1 ∼ N (µ1, diag(σ2
1)) (3.32)

z2 ∼ N (µ2, diag(σ2
2)) (3.33)

Thereafter, the latent space is concatenated as

z = z1 ⊕ z2 (3.34)

and finally

χ̂ = fF C(z). (3.35)

is obtained. A loss function for training is used consisting of

ℓ(χ̂, χ) = DKL

(
N (µ1, diag(σ2

1))∥N (0, I)
)

(3.36)

+ DKL

(
N (µ2, diag(σ2

2))∥N (0, I)
)

(3.37)

+ ℓBCE(χ̂, χ) (3.38)

The stochastic latent representation performed better in the preliminary tests

without any noticeable performance costs. This improvement may be attributed

to a regularised latent space and the incentive for z1 and z2 to be within a similar

range. Additionally, the distribution can be used for uncertainty quantification,

thereby enhancing the interpretability of the model. This is not explored within

the scope of this thesis, but may be relevant for future work.

Tested Configurations

The video is important as the movement between frames provides valuable in-

sights. Therefore, the optical flow between the frames of the video is the primary

point of interest. In Section 2.4, it is mentioned that a 3-dimensional CNN is ca-

pable of extracting optical flow. It is also established that RAFT (Teed and Deng,

2020) can lead to superior results. Additionally, it stands to reason that a ResNet

(K. He et al., 2016), outperforming many other architectures in tasks ranging

from image classification (Sarwinda et al., 2021) (T. He et al., 2019) to semantic

segmentation (Xia, Yin, and Zhang, 2019) and transfer learning (Rezende et al.,

2017), is capable of extracting meaningful features from a spectrogram.
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From these premises, four feasible model architectures emerge. These models

are trained and compared based on their validation accuracy during training, to

determine which is best suited for use in Algorithm 11. These configurations are

as follows:

1. f2D is the same model architecture used for the deep generative priors in

Modified BASIS, as described in Section 3.2.1. f3D takes RGB video V ∈ V
as input.

2. f2D is identical and fRAF T (F t, F t+1) = U t ∈ R2×h×w
is defined for video

frames F t. The stacked optical flows U 1⊕· · ·⊕UT −1 = U ∈ R2×h×w×T −1

are then used as an input to f3D(·), instead of the video V .

3. f2D is a ResNet18 and fRAF T is used to extract optical flow.

4. f2D is a ResNet18 and fRAF T is not used.

All configurations have z1, z2 ∈ R64
. The RAFT implementation used is

the pre-trained RAFT-Small model provided by torchvision. This model is not

finetuned during training.

The function f3D is implemented as 3D ResNet18 (Tran et al., 2015) and fF C

has one hidden layer h ∈ R64
with a ReLU activation function (Agarap, 2018).

Training occurs with a learning rate η = 10−4
and a batch size of 3 for the RAFT

+ ResNet18 architecture and 4 for the other models. These small batch sizes were

the largest possible given the available VRAM.
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Chapter 4

Experiments and Results

4.1 Experimental Setup

4.1.1 Tested Methods
All proposed methods from Section 3.2 are tested in the experiments. The results

are compared to three baselines. The idea behind this is that if an approach can-

not outperform the baselines, it shall not be further considered. The first baseline

is NMF, as described in Section 2.2.2. For this, the implementation provided by

the scikit-learn library (Pedregosa et al., 2011) is used. This involves coordinate

descent as the optimisation algorithm, the Frobenius norm as a β-loss (i.e., β = 2
in Algorithm 3, as, despite the suggestion by Févotte, Bertin, and Durrieu (2009),

the Itakura-Saito divergence did not outperform the Frobenius norm), random

initialisation, no regularisation and a maximum of 200 iterations. The second

baseline consists of random samples from the respective VAEs x̂j = f dec

j (z)
with z ∼ N (0, I). These images are generated with prior knowledge on the

structure of the data but no information on the mixed signal. The third baseline

consists of noise images x̃ ∼ Uniform(X ).

4.1.2 Hardware
All experiments were conducted on a computer with 32 GB RAM, a 2 TB SSD,

an Nvidia RTX 4080 GPU with 16 GB VRAM and an Intel i7 13700k processor,

running Debian
1

12. The code was written in Python version 3.11.2 and can be

found at https://github.com/maxjappert/mmdgass.

1https://www.debian.org/ (accessed August 29, 2024).
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4.1.3 Statistical Measures
The mean of x ∈ RN

is computed as

x̄ = 1
N

N∑
i=1

xi. (4.1)

The standard deviation measures the spread of individual data points, esti-

mating how much the data deviates from the mean. The test validation sets,

on which the results are evaluated, are samples from the entire dataset. Thus,

Bessel’s correction (So, 2008) must be used to compute an unbiased estimator of

the variance. We therefore compute the estimated standard deviation as

σ̂x =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2. (4.2)

The standard error, on the other hand, measures the precision of the sample

mean as an estimate of the true mean. It reflects the variability of the sample

means if the experiment were to be repeated multiple times. It is computed as

σ̂x̄ = σ̂x√
N

. (4.3)

Equations 4.1, 4.2 and 4.3 are adapted from Wasserman (2013) and computed

using the numpy library.

4.1.4 Description of Experiments
A seed s = 42 is set to ensure the reproducibility of the experiments. The

mir eval package (Raffel et al., 2014) provides the functions for computing the

evaluation metrics during the experiments, as described in Section 2.2.3. The ex-

periments are conducted with random mixtures of all source types with k = 2.

The following experiments are conducted:

1. Uni-Modal Separation Experiment: 450 samples are uniformly drawn

from the toy and MUSDB18 test datasets and then separated by all meth-

ods described in Section 3.2. The separation attempts are evaluated based

on SDR, ISR, SIR and SAR and the results are displayed both as mean ±
standard error in Tables 4.1 and 4.2 and as violin plots in Figures 4.1 and

4.2.

2. Visual Samples: Following a similar premise as Experiment 1, four sam-

ples each are uniformly drawn from the toy and MUSDB18 test datasets
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and then separated using all methods described in Section 3.2. These sepa-

rations are visualised in Figures 4.3 and 4.4, permitting qualitative analysis.

3. ELBO Confusion Matrices: Figure 4.5 presents a confusion matrix for

both the toy and MUSDB18 datasets, illustrating every stem type under the

ELBOL(ϕ, s) ≤ log p(s) computed by each VAE type. The rows denote the

models and the columns denote the data classes. Each row is normalised

by a softmax layer resulting in a valid probability distribution over all stem

types per model, with a sample space Ω with cardinality |Ω| = 4. An ideal

scenario would yield a diagonal matrix, indicating that the models assign

high probability to in-class data and low probability to out-of-class data.

The data is drawn from the test datasets.

4. Audio-VisualMatchingClassifier Performance: Figure 4.11 shows the

validation accuracy over the training epochs for all four video model con-

figurations discussed in Section 3.2.4.

5. β-Evaluation: For each video weight β ∈ {2i | 0 ≤ i ≤ 7, i ∈ N0}
30 samples are drawn from the URMP validation set and the mean and

standard error of the four metrics is computed. These values are recorded

in Table 4.3 and plotted in Figure 4.6.

6. Video Separation Experiment: Following a similar premise as Experi-

ment 1, 50 samples are drawn from the URMP test set and separated by

Modified BASIS both with and without the inclusion of video with β =
128, as explained in Section 3.2.4. The comparison as mean ± standard
error can be found in Table 4.4 and as a violin plot in Figure 4.10.

7. Additional BASIS Visual Samples: Three samples are uniformly drawn

from the toy, MUSDB18 and URMP test datasets. These are then sepa-

rated using Modified BASIS and the separated spectrograms are printed in

Figures 4.8, 4.9 and 4.7. The latter includes both the separation with and

without incorporating video and β = 128.
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4.2 Results

Figure 4.1: Uni-Modal Separation Experiment on the toy data. Evaluated metrics

in dB over 450 samples from the test data. The violins are asymmetric, the blue

side describing Source 1 and the orange side Source 2.

BASIS BASIS F. AE-BSS L. AE-BSS Noise P. Samples NMF

SDR 17.4 ± 0.3 14.8 ± 0.3 5.7 ± 0.2 -2.6 ± 0.5 -8.7 ± 0.4 7.9 ± 0.3 0.8 ± 0.2

ISR 22.0 ± 0.4 18.7 ± 0.4 7.0 ± 0.2 -0.2 ± 0.4 -2.8 ± 0.4 9.9 ± 0.3 3.7 ± 0.3

SIR 26.1 ± 0.4 22.7 ± 0.3 14.6 ± 0.2 15.2 ± 0.4 7.8 ± 0.3 18.2 ± 0.3 9.5 ± 0.2

SAR 22.1 ± 0.3 21.2 ± 0.3 13.2 ± 0.2 20.5 ± 0.4 5.2 ± 0.1 15.6 ± 0.4 13.7 ± 0.2

Table 4.1: Results of Uni-Modal Separation Experiment on the toy dataset in dB.

Evaluated metrics over 450 samples from the test set. The entries are mean ±
standard error.
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Figure 4.2: Results of Uni-Modal Separation Experiment on the MUSDB18 data.

Evaluated metrics in dB over 450 samples from the test dataset. The blue side

describes Source 1 and the orange side Source 2.

BASIS BASIS F. AE-BSS L. AE-BSS Noise P. Samples NMF

SDR 7.2 ± 0.2 1.7 ± 0.2 5.4 ± 0.2 3.2 ± 0.2 -4.1 ± 0.2 3.8 ± 0.1 4.0 ± 0.2

ISR 8.8 ± 0.2 2.5 ± 0.2 7.8 ± 0.2 5.5 ± 0.2 1.3 ± 0.2 5.3 ± 0.1 5.7 ± 0.2

SIR 15.8 ± 0.2 12.8 ± 0.2 13.6 ± 0.2 14.5 ± 0.3 7.7 ± 0.2 12.5 ± 0.2 13.2 ± 0.2

SAR 17.6 ± 0.2 17.1 ± 0.2 16.0 ± 0.2 18.0 ± 0.2 5.2 ± 0.1 13.3 ± 0.1 15.2 ± 0.2

Table 4.2: Results of Uni-Modal Separation Experiment on the MUSDB18 data in

dB. Evaluated metrics for 400 samples from the test dataset. The entries are mean
± standard error.
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(a) (b)

(c) (d)

Figure 4.3: Visual samples and their separations from the toy test set using the

discussed approaches.
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(a) (b)

(c) (d)

Figure 4.4: Visual samples and their separations from the MUSDB18 test set using

the discussed approaches.
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(a) Toy (b) MUSDB18

Figure 4.5: Confusion matrices showing the approximated prior probabilities

p(s) as the exponentiated ELBOs exp[L(ϕ, s)] ≤ p(s) of each source on the

x-axis under each VAE on the y-axis normalised by a softmax layer for the

MUSDB18 and toy datasets. The data is drawn from the test dataset. For

MUSDB18 in Figure 4.5b, a temperature scaling parameter τ = 1/8 is used.

β Mean ± Standard Error

1 9.75 ± 0.39

2 10.04 ± 0.31

4 10.10 ± 0.43

8 10.42 ± 0.31
16 9.63 ± 0.43

32 10.08 ± 0.43

64 9.99 ± 0.28

128 10.07 ± 0.31

Table 4.3: Mean and standard error for different video weights β in dB. The same

values can be found in Figure 4.6. These values were evaluated using 30 samples

from the URMP validation set.

No Video Video with β = 128
SDR 10.03 ± 0.23 10.07 ± 0.22
ISR 11.19 ± 0.26 11.24 ± 0.25
SIR 17.55 ± 0.27 17.55 ± 0.25

SAR 22.22 ± 0.27 22.25 ± 0.26

Table 4.4: Results of Video Separation Experiment in dB, comparing the perfor-

mance on the URMP test set when incorporating video vs. when not incorporat-

ing video. The data is printed as mean ± standard error.
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Figure 4.6: Mean and standard error for different video weights β. Each β per-

formance was evaluated using the same 30 samples from the URMP validation

set. The same values can be found in Table 4.3.
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Figure 4.7: BASIS separation attempt of three random samples from the URMP

test set.
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Figure 4.8: BASIS separation attempt of three random samples from toy test set.
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Figure 4.9: BASIS separation attempt of three random samples from MUSDB18

test set.
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Figure 4.10: Results of Video Separation Experiment, comparing the performance

of incorporating video to not incorporating video the URMP test dataset, as de-

scribed in Section 3.2.4. The blue side denotes Source 1, the orange side Source

2. The means and standard errors can be found in Table 4.4.

(a) Training set. (b) Validation set.

Figure 4.11: Accuracy of the four tested video configurations during training.

Plot (a) shows the accuracy on the train set and (b) shows the accuracy on the

validation set.
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Chapter 5

Discussion

5.1 Summary of Findings

5.1.1 Uni-Modal Separation Experiment
The results of the Uni-Modal Separation Experiment can be found in Tables 4.1

and 4.2 and as violin plots in Figures Figures 4.1 and 4.2. These results suggest that

BASIS performs best with respect to all four metrics on both non-video datasets.

AE-BSS achieves a mean SDR of 5.7 dB on the toy data and a slightly lower 5.4 dB

on the MUSDB18, thereby coming close to BASIS on the latter and outperforming

BASIS Finetuned.

BASIS achieves a significantly higher mean SDR of 17.4 dB on the toy test set

compared to 7.2 dB on the MUSDB18 test set. This is to be expected, as the toy

dataset is significantly more predictable than MUSDB18 due to the simple rules

used to generate it. BASIS with the VAE-priors finetuned on noise-perturbed data

(denoted as BASIS Finetuned in the experiments) achieves 14.8 dB and 1.7 dB re-

spectively and is thus consistently outperformed by BASIS using a single model

for all noise levels. On the MUSDB18 data, it is additionally outperformed by the

baseline consisting of random samples at 3.8 dB. A reason for the sub-par perfor-

mance with the finetuned models could be that the VAEs may struggle to balance

noise information and the actual distribution, thus becoming less well calibrated

during finetuning. This could lead to a loss of generality when compared to a

single model handling all noise levels. The fact that the mean SDR on the more

predictable toy data falls off drastically on the less predictable MUSDB18 data

suggests overfitting.

AE-BSS achieves a mean SDR of 5.7 dB on the toy data and a slightly lower 5.4

dB on MUSDB18, thereby coming close to the 7.2 dB achieved by BASIS on the

latter and outperforming BASIS Finetuned. Nonetheless, it is also outperformed

by the mean SDR of 7.9 dB achieved by the baseline consisting of random samples
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from the VAE priors on the toy data. As it can not consistently outperform all

baselines, AE-BSS is not suggested to be a competitive architecture for audio

source separation. Linear AE-BSS does not manage to achieve a positive average

SDR on the toy dataset and thus the same conclusion is drawn.

Figure 4.1 reveals that all methods overlap for all metrics, with the exception

of the SAR on the noise baseline. This is even more pronounced in Figure 4.2.

This figure also reveals that despite BASIS Finetuned being outperformed by the

other methods with respect to the mean SDR, its best attempts extend up to > 30
SDR, a similar maximum to the best-performing BASIS.

5.1.2 Visual Samples
Toy Data

Figure 4.3 permits qualitative analysis of the different approaches on the toy data.

BASIS manages to cleanly separate all four samples, albeit with the introduction

of slight noise. The blind NMF reveals its limitations and generates an empty

source in samples (b) and (d). In samples (a) and (c), it separates the mixture into

two intuitively obvious sources, which are nonetheless inaccurate. This reveals

the limitation of BSS approaches such as NMF.

AE-BSS assigns a signal with a low fundamental with few overtones to Source

1 and variations of a grid pattern to Source 2 on all four samples. This implies

a lack of flexibility, possibly due to the fact that one model was trained on all

data instead of training one model per combination of stem types. Linear AE-

BSS fails to reconstruct an accurate mixed signal on all four samples, suggesting

a fundamentally misguided approach. BASIS Finetuned performs very similar

separations to BASIS, but with more noise.

MUSDB18 data

Figure 4.4 provides the same for the MUSDB18 data. The BASIS separations here

are less accurate and have more artefacts when compared to the toy data. In-

terestingly, the NMF separations look more convincing than they do for the toy

data. This aligns with the results of the previous experiment. The sources are

sometimes switched, as NMF has no information on which source is which. The

reconstructed mixture consists of a grid-like texture, which is to be expected

given that the reconstruction is a linear combination of k spectral bases.

AE-BSS provides very blurry separations and thus a very blurry reconstruc-

tion. The generated signals are obviously not similar enough to the ground truth

to be considered a convincing separation. Linear AE-BSS provides an even blur-

rier separation with a more-or-less entirely white image as Source 2 for all sam-
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ples. BASIS Finetuned again provides a similar, but noisier version of the BASIS

separation. Despite the additional noise, the separation is overly sharp, especially

in samples (a) and (b).

5.1.3 ELBO Confusion Matrices
The confusion matrices in Figure 4.5 provide an estimate of the VAEs’ ability to

function as priors for the sources. On the toy data, all VAEs assign the highest

probability to their in-class data, as expected; that is, for each row, the corre-

sponding column has a higher probability than the others. However, this does

not extend to the MUSDB18 data, where the highest probability is assigned to

the bass data for all models and thus only the bass model assigns the highest

probability to in-class data. This observation reinforces the conclusion that deep

generative priors struggle with high data variability, thus aligning with the find-

ings of Frank and Ilse (2020).

5.1.4 Audio-Visual Matching Classifier Performance
Figure 4.11 indicates that both approaches utilising a ResNet outperform those

that do not, on both training and validation data. When using RAFT to pre-

process the video and a ResNet18 for the spectrograms, the model achieves a

validation accuracy of 77%, narrowly outperforming the architecture using a less

sophisticated VAE on the validation data, which achieves 74% on the validation

set. Interestingly, the opposite is the case for the training data. This suggests

that the architecture not using RAFT — directly taking the video as an input to

the 3D ResNet — fits the data more closely but does not generalise as well to

unseen data compared to the model which pre-processes the video using RAFT

to estimate the optical flow between frames. Additionally, the model using RAFT

performs inference quicker, as the input to f3D has 2 instead of 3 channels and

a depth of T − 1 instead of T . Consequently, all subsequent video experiments

are performed using RAFT with a 2D ResNet18 for the spectrograms.

5.1.5 β-Evaluation
Figure 4.6 and Table 4.3 indicate no trend in the SDR for increasing β. Modified

BASIS results in NaN-values for β ≥ 256.

5.1.6 Video Separation Experiment
Table 4.4 shows that incorporating video into Modified BASIS with β = 128 leads

to a slightly higher mean SDR of 10.07 dB compared to 10.03 dB without video.
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This falls within the standard error margin and it is thereby not large enough

to definitively conclude a causal relationship between incorporating video into

Modified BASIS and better separation. The same narrow margin can be observed

for ISR, SAR and SIR. Figure 4.10 paints a more nuanced picture of the SDR dis-

tribution of the experiment, featuring asymmetric violin plots. These plot reveal

only subtle differences between the two versions.

Without using video, Modified BASIS achieves a higher SDR on the URMP

dataset than on the MUSDB18 dataset. This is likely due to the spectral qualities

of the featured chamber music instruments having lower in-class variability than

the stems in the MUSDB18 pop music.

5.1.7 Additional BASIS Visual Samples
Figure 4.7 shows the Modified BASIS separation of three samples from the URMP

test set with and without including video with β = 128. The separation per-

formed with the inclusion of video seems slightly more accurate for all three

samples. Figure 4.9 shows the same for the MUSDB18 dataset, revealing infe-

rior separation performance when compared to the URMP or the toy dataset in

Figure 4.8.

5.2 Comparison with Existing Work

5.2.1 Uni-Modal
It has already been established that Modified BASIS outperforms NMF (D. D. Lee

and Seung, 1999). Comparing these results to cutting-edge approaches is hard

due to the downscaled nature of the data used in this thesis (see Section 3.1).

This must be taken into consideration in Table 5.1.

Model Mean SDR in dB

ResUNetDecouple+ (Kong et al., 2021) 6.73

CWS-PResUNet (H. Liu, Kong, and J. Liu, 2021) 6.77

Modified BASIS (us) 7.2

KUIELab-MDX-Net (Kim et al., 2021) 7.47

Hybrid Demucs (Défossez, 2021) 7.68

BSRNN Luo and J. Yu (2023) 8.42

Table 5.1: Comparison of mean SDR values on the MUSDB18 dataset with the

Modified BASIS results of the Uni-Modal Separation Experiment from Table 4.2.

This comparison suggests that the mean SDR of 7.2 achieved by Modified
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BASIS in the Uni-Modal Separation Experiment is comparable to state-of-the-art

approaches. It is likely that further work, as suggested in Section 5.3, would allow

for achieving comparable results to BSRNN. Future work is required to evaluate

whether these results hold up on full-scale data.

5.2.2 Bi-Modal
Comparing the results of Modified BASIS on the URMP dataset to the results

in Table 5.2 requires similar assumptions as the ones outlined in Section 5.2.1.

Additionally, these results are achieved on the MUSIC dataset, while our results

were achieved on the more obscure URMP dataset.

Model Mean SDR in dB

Minus-Plus Net (Xu, Dai, and Lin, 2019) 7.0

Sound of Pixels (Zhao, Gan, Rouditchenko, et al., 2018) 7.26

Co-Separation (Gao and Grauman, 2019) 7.64

Sound of Motion (Zhao, Gan, Ma, et al., 2019) 8.2

AVSGS (Chatterjee et al., 2021) 11.4

VGMCL (Islam et al., 2024) 12.81

Table 5.2: Comparison of SDR values on the audio-visual MUSIC dataset.

The Modified BASIS mean SDR of 10.07 obtained in the Video Separation Ex-

periment, to be found in Table 4.4, is not directly comparable due to the differing

datasets and is thus left out of Table 5.2.

5.3 Limitations and Future Work
Modified BASIS offers numerous opportunities for improvement. Firstly, the

scaled-down spectrograms do not allow for transforming the signal back into

real space, limiting this thesis to a toy scenario. It acts as a proof of concept

for the Modified BASIS approach to audio source separation in time-frequency

space.

Due to the downscaled nature of the data, a qualitative analysis is not fea-

sible. In order to allow for such an analysis, as performed by Défossez (2021),

one must operate on full-size spectrograms which can be converted to real space

using either Algorithm 2 or Equation 2.14 using the stored phase ΦT
. Operating

on full-size spectrograms could potentially exceed the capabilities of a VAE, thus

failing to provide sufficiently detailed reconstructions. This issue is easily cir-

cumvented, as BASIS allows for using any generative model which can compute

the probability of data. Thus, a more capable generative model such as Glow
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(Durk P Kingma and Dhariwal, 2018) or NCSN (Song and Ermon, 2019) could be

used.

The audio-visual separation approach using Modified BASIS is performed on

the relatively obscure URMP dataset (Li et al., 2018). In contrast, the state-of-the-

art papers use the MUSIC dataset (Zhao, Gan, Rouditchenko, et al., 2018), which

contains more data. Training the χ-model on the MUSIC dataset, in conjunc-

tion with the previously mentioned aspect of training on full-size spectrograms,

would facilitate a direct comparison with the state-of-the-art approaches.

The fact that the contributions of this thesis utilise monaural signals also

presents room for improvement. Both the MUSDB18 and the URMP datasets

provide binaural signals, whereby both channels are preprocessed to create a new

monoraul signal. Considering the argument presented in Section 1.2 regarding

the human approach being a useful heuristic for designing AI systems, it could

be interesting to evaluate if a binaural approach to the BASIS algorithm could

improve results. Given that CNNs are used on spectrograms, the dataset could

easily be preprocessed as a stereo signal, using two input channels instead of

one.

The video models were trained on RGB data, as explained in Section 3.1, al-

though single-channel monochrome frames would have probably sufficed. This

would have allowed for higher batch sizes and faster computation, potentially

without sacrificing performance.

Given the genetically evolved human ability to separate sound sources, it may

be interesting to evaluate the performance of a genetic algorithm (GA) on this

problem. A possible approach could involve training a VAE on spectrogram data,

then learning the weights and architecture of a separate neural network using

a GA to convert the latent representation of a mixed source signal into k latent

representations of possible mixtures. While the VAE trained on spectrograms

could be based on this thesis, the GA-based neural network could be trained

using the recently proposed CoDeepNEAT algorithm (Miikkulainen et al., 2024).
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Chapter 6

Conclusion

6.1 Summary
In this thesis, deep generative models are utilised to separate the constituent

sources from mixed audio signals. Various approaches are explored, leading to

the conclusion that the BASIS algorithm, originally proposed by Jayaram and

Thickstun (2020), is a viable method for audio source separation by framing the

problem as an image separation task. This thesis introduces Modified BASIS,

which incorporates video into the separation process in order to potentially bene-

fit from multiple modalities, much as humans do. Modified BASIS performs sep-

aration by sampling from the posterior p(s1, . . . , sk | m) over source signals,

given a mixed signal in time-frequency space, using noise-annealed Langevin

dynamics.

The obtained results suggest that Modified BASIS can compete with state-

of-the-art approaches while utilising computationally inexpensive VAEs. Fur-

thermore, the findings suggest that including video into the separation process

could increase the separation performance. To do this, a method is presented

using a classifier predicting if a given source separation matches a video, using

RAFT (Teed and Deng, 2020) to extract the optical flow from the video and us-

ing a concatenated latent space to achieve a classification accuracy of 77% on

the validation set. The output is used to compute the gradient of the Bernoulli-

distributed log probability of a given separation matching the video, guiding the

sampler in a more profitable direction.

This thesis compares Modified BASIS to the blind source separation approach

using multi-encoder AEs suggested by Webster and J. Lee (2023) and NMF (D. D.

Lee and Seung, 1999), both of which are outperformed with respect to the SDR

metric. Despite this, a key observation includes that performance of the Modified

BASIS is noticeably dependent on in-class variability.

60



6.2 Implications
The results of this thesis demonstrate that the integration of deep generative

priors provided by VAEs and noise-annealed Langevin dynamics can effectively

separate audio sources from mixed signals in time-frequency space. Nonethe-

less, the performance thereof is highly dependent on the in-class variability of a

dataset. Thus, more dynamic approaches must be considered for systems which

can effectively be deployed for varied and stable real-world use. An example of a

robust model that is potentially more capable to generalise across different data

types and conditions is provided by Islam et al. (2024), as described in Section

2.3.2. Nonetheless, it is likely that future work on Modified BASIS could lead to

state-of-the-art results.

The incorporation of visual information into the audio source separation pro-

cess highlights a novel method for integrating multi-modal data into separation

tasks. This approach aligns with human auditory scene analysis, which often

relies on multiple sensory inputs. The implications extend beyond audio pro-

cessing, suggesting that multi-modal techniques could be applied to a broader

range of tasks where multiple data types are available.
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