
Beating the Odds: Theory and Algorithms of
Poker

Max Jappert
Seminar: Theory and Algorithms of Puzzles and Games

University of Basel

Supervised by Patrick Ferber

November 24, 2021

Abstract

Since the dawn of Computer Science, imperfect information games like poker have
fascinated many of the field’s greatest minds. This paper covers both the funda-
mental ideas and advanced achievements in the algorithmic approach to playing
poker. Starting off by covering basic concepts from game theory in an applied
manner, affording an intuitive understanding of how an algorithm can deal with
imperfect information, the concepts are later incrementally expanded such as to
meet the requirements of increasingly complex versions of poker. The last chapter
is dedicated to covering state of the art poker AIs by discussing how the previously
introduced concepts are utilised within.

1 Introduction
Computers have traditionally been rather good at playing perfect-information games.
The fact that an AI managed to beat the world’s then leading chess player Garry Kas-
parov back in 1996 demonstrates this quite well (Tran 1996).

A similar claim can’t be made for poker, although it played a significant role as
a case study for seminal game theoretical papers midway during the last decade (e.g.
von Neumann 1928), since, as an imperfect-information game, it resembles many real-
life situations much more closely than its perfect-information counterparts. It is very
rare that we find ourselves having complete knowledge of a scenario in which we need
to make important decisions. Think debates, investing in the stock market, placing a
strategic vote, or partitioning ones study-time for each exam. These are all situations
in which we have to strategically work with uncertainty, which is very unlike the afore-
mentioned games, in which the information is shared, and very much like poker, in
which the aspect of uncertainty is unavoidable for strategic play.

Surprisingly, the first poker-playing AI feasibly capable of beating humans was
only released in 2015. Even more surprising is that since then multiple AIs have beaten

1

professional players by unbelievable margins, thereby establishing themselves as some
of the most significant advancements in the entire field over the past few years.

This paper is going to cover the algorithmic approach to playing poker, thereby
demonstrating a technique, with which we can let computers deal with imperfect in-
formation effectively. Starting off with the formal basics and game theoretic concepts,
it will incrementally introduce more complex variations of the previously introduced
concepts, with the goal of affording a self-contained introduction to playing poker al-
gorithmically.

2 Formal Concepts used in Poker Algorithms

2.1 Rules of Poker
There are many different variations of poker, such that it lies outside the scope of this
paper to describe each of them in detail. What they share in common, are the following
rules:

Each player gets dealt a certain amount of cards, which are only visible to each
player respectively. In certain variants there are also cards lying face-up on the table,
such that all can see them. How many cards these are and when they’re laid on the table
varies from variant to variant. Each player can bet money on them winning the round.
In order to be able to win the round, a player must always meet the maximum amount
which has been bet to stay in the game, which means that the highest bidder decides on
how much everyone must bet. The players can at any point decide to check, meaning
that they don’t need to continue raising their bet, yet they also cannot win the round and
loose all they have already bet for the round. Winning the round means either being
the only one left who hasn’t checked, or in the case where nobody wants to raise (or
the variant doesn’t permit further betting) having the most valuable card combination.
How card combinations are valued is not going to be of importance in this paper. The
player who wins the round is rewarded all the money which has been bet by all players
during the given round.

The goal of an algorithm is maximizing the amount of money (we’ll use the term
payoff) which can be won. In order to achieve this, we need a theoretical framework to
understand how that can be reached in the case, where each player only has a limited
amount of information on the game state. That theoretical framework is game theory,
whose concepts will be introduced in the following sections.

2.2 Nash Equilibrium
The concept of Nash equilibrium exceeds the scope of purely playing poker. It was
introduced by mathematician John Nash in 1950 and is defined as follows:

Definition 1 (Nash equilibrium (Milovsky 2014)).
A set of strategies, such that each player, considering all information they have gained
during the game, cannot benefit from unilaterally changing their own strategy is called
a Nash equilibrium.

2

This paper will demonstrate the concept of a Nash equilibrium using the normal form
of two games.

2.3 Normal-form games
The normal form of games can be informally defined as a representation in which the
payoff of a relation of actions for 2 players and k possible actions per player can be
represented as a Rk×k matrix for each decision point in the game, with each entry
representing an n-tuple of payoffs.1 For formally defining the normal form of a game
this paper will follow Definition 2.

Definition 2 (Normal-form game (Neller and Lanctot 2013)).
A normal-form game is a tuple (N,A, u), where:

• N = {1, ..., n} is a finite set of n players.

• Ai is a finite set of possible actions for player i.

• A = A1 × ... × An is the set of all possible simultaneous actions. Each of its
elements a ∈ A is an n-tuple called an action profile, whereby ai ∈ Ai denotes
the action chosen by player i.

• u is a function mapping each action profile and each strategy profile σ (intro-
duced later) to a vector of utilities (also referred to as payoffs) for each player.
Player i’s payoff function ui : A −→ R calculates the payoff for player i given
an action profile.

We’ll first demonstrate the concept of a Nash Equilibrium on a simple and seminal
example: the prisoners dilemma. The game consists of two agents, P1 and P2, who are
convicted of plotting a crime. They are separately interrogated, whereby they cannot
communicate, and offered the following options:

1. If both don’t confess, they’ll each get a short prison sentence, e. g. 1 year.

2. If both confess, they’ll both get the same medium prison sentence, e. g. 3 years.

3. If Pi confesses and Pj doesn’t for i, j ∈ {1, 2} and i ̸= j, then Pj is free to leave
and Pi gets a long prison sentence, e.g. 5 years.

These conditions can be visualized in normal form with the following R2×2 payoff
matrix, due to the fact that both players have |Ai| = 2 possible actions. Each box rep-
resents the payoff of one action profile u(a1, a2) representing the loss for each player
in the given scenario. Each can choose from their set of possible actions Ai, whose
elements define the rows and the columns.

1 This paper introduces the normal form because the payoff matrix makes visualizing the game theo-
retical aspects easier, but for more complex games the payoff matrix becomes impractical. E.g. for heads-up
limit Texas hold’em poker there are k = 3.589×1013 possible actions (Johanson 2013), which would make
a matrix representation highly impractical. More on that in later chapters.

3

P1 confesses P1 doesn’t confess
P2 confesses −3,−3 0,−5
P2 doesn’t confess −5, 0 −1,−1

2.4 Imperfect-Information Games
In a perfect information game, like e.g. chess, both players have access to the same
knowledge of the game state, i.e. they have full knowledge of their opponent’s future
options and past actions. In the prisoner’s dilemma, this is only partially the case:
the strategy needs to be chosen under the condition that the other person’s strategy
is unknown. The same goes for poker. This notion is formalized as an imperfect-
information game.

Definition 3 (Imperfect-Information Games, (Levin 2002)).
A game in which its players do not have common knowledge of the game is called an
imperfect-information game.

3 Counterfactual Regret Minimization
A widely used algorithm for playing poker is Counterfactual Regret Minimization,
henceforth abbreviated as CFR. CFR finds a strategy by approximating the Nash equi-
librium for a given game. It does this by playing against itself and thereby learning
how to minimize regret. It iteratively deduces a strategy (in form of a probability dis-
tribution over the set of possible actions) from the cumulative regret. Regret in this
context refers to how much the algorithm "regrets" not having chosen a given action.
In CFR, the counterfactual regret r(ai) is computed for each ai ∈ Ai by subtracting the
achieved payoff ui(ai) from the possible payoff ui(a

′
i) if a′i had been chosen instead.

In more formal terms we can define this as follows for a two-player game: For
ai being player i’s action and a−i being the opponent’s action, we can compute the
immediate regret rti(a

′
i) for round t ∈ N and each possible action a′i as follows:

ri(a
′
i) = ui(a

′
i, a−i)− ui(ai, a−i) (1)

This corresponds to the aforementioned informal description. For calculating the strat-
egy we divide the cumulative regret Ri(ai) for each action ai ∈ Ai by the total regret
of all actions. The cumulative regret for action ai ∈ Ai is trivially computed as in
equation (2), whereby T ∈ N refers to the amount of rounds played.

RT
i (ai) =

T∑
t=1

rti(ai) (2)

4

In simple terms, a computer playing poker requires a way to choose an action at each
decision point in a game. The way CFR accounts for this is by defining a probability
distribution over the set of possible actions Ai, whereby the probability σi(ai) denotes
the probability that player i chooses action ai ∈ Ai. There are two more important
concepts related to strategies: A strategy profile σ ∈ Σ consists of a strategy σi for all
players i ∈ N and Σi denotes the set of strategies for player i.

Since the strategy is defined as a probability distribution over Ai, we need to com-
pute a probability σ(ai) for each ai ∈ Ai, such that

∑
ai∈Ai

σi(ai) = 1. We do this
by dividing the cumulative regret by the total cumulative regret if the latter is not equal
to 0, since that would imply that no rounds have been played yet (and a division by 0).
We formally define the computation of the strategy next strategy (i.e. for round T + 1)
in equation (3).

σT+1
i (ai) =

RT

i (ai)∑
a′
i
∈Ai

RT
i (a′

i)

∑
a′
i∈Ai

RT
i (a

′
i) ̸= 0

1
|Ai| otherwise

(3)

3.1 Example: Rock-Paper-Scissors
This paper will use the game rock paper scissors to demonstrate how CFR uses regret
minimization to approximate the Nash equilibrium. We can use the normal form for
this game, due to the fact that there is only 1 decision point with |Ai| = 3 possible
actions. The payoff matrix has the following form:

P1 rock P1 paper P1 scissors
P2 rock 0, 0 −1, 1 1,−1
P2 paper −1, 1 0, 0 −1, 1
P2 scissors 1,−1 −1, 1 0, 0

The algorithm iteratively performs the following four steps, with each cycle represent-
ing a single round it played against itself.

1. Decide on an action depending on the strategy (which is trivial due to the fact
that the strategy is a probability distribution over the set of possible actions).

2. Calculate the achieved payoff from choosing this strategy using the payoff ma-
trix.

3. Calculate the immediate regret rTi (ai) for each possible action ai ∈ Ai. This is
done as defined in equation (1).

4. Calculate the next strategy σT+1
i (ai) for the next round T + 1 by means of

equation (3).

For example, the computation would look as such for T = 0 and player i:

5

1. We start off by initializing the strategy as evenly distributed, which means that
σT
i (ai) =

1
|Ai| for all ai ∈ Ai, as in equation (3). The probability for choosing

each action is equal and we choose ai = ”Paper”.

2. Our opponent has chosen a−i = ”Scissors”, which means that our payoff for
this round is ui(σ

T) = ui(”Paper”, ”Scissors”) = −1.

3. Our immediate regret for each action is computed as in equation (1), so it follows
that rTi (a

′
i) = ui(a

′
i, ”Scissors”)− ui(”Paper”, ”Scissors”). That results in

the following immediate regrets:

rTi (”Rock”) = 1− (−1) = 2
rTi (”Paper”) = −1− (−1) = 0
rTi (”Scissors”) = 0− (−1) = 1

4. We update our strategy as defined in equation (3), which results in the following
updated strategy:

σT+1
i (”Rock”) = 2

3

σT+1
i (”Paper”) = 0

σT+1
i (”Scissors”) = 1

3

This process is repeated until it converges to the optimal strategy σT
i (ai) = 1

3 for all
ai ∈ Ai at roughly T = 5×105, which is somewhat obvious (although research shows
that in practical play humans often don’t abide to this strategy [Batzilis et al. 2019]).
It is also the Nash equilibrium, because playing with this strategy entails that no player
can benefit from unilaterally changing their own strategy considering their knowledge
of the game. For playing against another entity than itself, the algorithm would simply
take the average strategy and play accordingly.

3.2 Example: Kuhn Poker
While rock-paper-scissors is definitely not poker, it shows the idea of CFR and thereby
the way an algorithm can deal with imperfect information quite well. Since real poker
is quite a bit more complex, I’d like to add an intermediate step and look at how we can
adapt this algorithm to deal with a toy poker game. We’ll do so with the drastically sim-
plified version of poker called Kuhn poker. It was introduced by mathematician Harold
W. Kuhn as a simple sequential two-player imperfect-information game on which a
complete game theoretical analysis can be performed (Kuhn 2016).

The game involves three cards whose values differ, this paper will henceforth con-
sider them to be Jack, Queen and King, and each player is dealt one card. Before the
round starts, both players have to bet one chip. Then one player starts and can either
bet a further chip or check. Thereafter, the other player does the same. If one player
bets and the other passes, the player who has bet wins the round (except if the starting
player passes and the other player bets, then the starting player has the chance to also
bet), and if both pass or both bet the player with the more valuable card wins the round.

6

Kuhn poker, unlike the games we’ve looked at so far, is a sequential game, it con-
sists of a sequence of actions. Although it would in theory be possible to treat it
in normal-form by assuming that both players calculate their strategy at the begin-
ning of each game for all possible actions the opponent could make, but this would
result in a huge and impractical matrix, whereby we must consider that each action
must be treated differently depending on the point in the game at which it is played,
how much has been bet, etc. Additionally, for the sake of approaching how proper
poker is computed, we’ll be representing Kuhn poker in extensive form. Thereby the
game is represented as a tree with chance nodes, terminal nodes and choice nodes.
Perfect-information games can also be represented as such, yet for imperfect infor-
mation games we need to consider that certain nodes are indistinguishable from each
other at a give game state, since the player doesn’t have full knowledge of the game
state (other than in chess, for example, where all past and possible moves are known
and therefore all nodes are, in theory, distinguishable). We take this into account by
partitioning the nodes into sets of nodes, whereby each set contains nodes, which are
indistinguishable from each other for the player. We call them information sets.

For example: You are player 1 with a Queen and have have to decide if you want
to bet or pass. For you the node in the game tree representing player 2 having Jack
and the node representing player 2 having King aren’t distinguishable, because you
simply lack the information needed in order to make the distinction. Therefore, those
two nodes are in the same information set.

Extensive-form games are best represented as a game tree. Other than with non-toy
poker, Kuhn poker is simple enough, i.e. it has few enough nodes, such that this tree
can be feasibly printed. Figure 1 shows the game tree for Kuhn poker.

The round nodes are the chance nodes: they denote the random allocation of cards.
The square and triangular nodes are the decision nodes: At each such node a decision
is met, in our case to either check or bet. The rhombic nodes are the terminal nodes:
when they are reached, the game is over and the payoff is determined.

Each information set is shown as one horizontally aligned bar of dotted lines. This
intuitively makes sense. E.g. being at the leftmost chance node, the decision node
where player 2 has Queen and the decision node where player 2 has King are not
distinguishable and they are therefore in the same information set.

3.2.1 Adapting CFR for extensive-form Games

Having intuitively introduced the extensive-form representation of Kuhn poker, we will
now formally define the extensive-form representation of a game with imperfect infor-
mation. The definition may look intimidating at first glance (it does, after all, take up
more than half a page), yet it builds upon and includes many of the concepts which
have already been introduced for normal-form games. The most noteworthy addition
are the histories, which describe a game state as the path which has been taken along
the game tree.

Definition 4 (Finite extensive-form representation of a game with imperfect informa-
tion (Zinkevich et al. 2007)).
A finite extensive game with imperfect information has the following components:

7

Source: https://justinsermeno.com/img/kuhn_game_tree.svg

Figure 1: The game tree for Kuhn poker.

• A finite set N of players i ∈ N .

• A finite set H of histories, which are represented as sequences of actions. The
empty sequence is in H and every prefix h′ ⊏ h of a sequence h ∈ H is also
in H . Z ⊆ H is the set of terminal histories, which includes all histories which
have reached a terminal node and therefore aren’t a prefix of any other history.
For the non-terminal histories h ∈ H \ Z, the function A(h) = {a | (h, a) ∈
H} returns a set of possible actions which can be performed after the sequence
denoted by h.

• A function P : H \ Z −→ N ∪ {c}, whereby {c} denotes the chance events,
which maps each non-terminal history to a player or a chance event, such that
P (h) is the player who takes an action at the end of h. This implies that if it’s
player i’s turn in a game round described by h, then P (h) = i. For the case that
P (h) = c, a chance event follows h.

• A function fc which assigns a probability for each chance event c to each history
h ∈ H \Z where P (h) = c holds. fc(c | h) thereby denotes the probability that
chance event c occurs given h.

• A partition Ii of the set {h ∈ H | P (h) = i} for every player i ∈ N with
the property that A(h) = A(h′) for all h, h′ in the same partition Ii ∈ Ii. A’s
domain is extended such that A(Ii) denotes the set A(h) and P (Ii) denotes the
player P (h). Ii is called an information set of player i, whereby the information
partition Ii includes all information sets of player i.

8

https://justinsermeno.com/img/kuhn_game_tree.svg

• A utility function ui : Z −→ R for every player i, which maps each terminal
history (i. e. each terminal node represented as a terminal history) to a payoff in
R. If N = {1, 2} and u1(z) + u2(z) = 0 for all z ∈ Z, the game is zero-sum.

The histories are represented by a string of characters. Examples of such strings and
how they are intepreted can be found in chapter 3.2.2. The strategies are used in a
similar way as in normal-form games. The strategy of player i is also denoted by σi

and it assigns a probability distribution over a set of actions A(Ii) for each information
set Ii ∈ Ii, instead of mapping each action to a probability individually.

We further define the reach probability πσ , which is the probability of history h
occuring if strategy profile σ is used by the players. The reach probability consists
of the contributions of all players and chance nodes πσ

i with i ∈ N ∪ {c} multiplied
together.

For later usage we’ll define the reach probability of a terminal node given a history
in equation (4).

πσ(h, z) =

{
πσ(z)
πσ(h) h ⊑ z

0 otherwise
(4)

For extensive-form games, we need to store the counterfactual regret for each action in
for each information set separately, instead of only once, as with a normal-form game.
This is due to the fact that the regret must be computed for each decision point in a
game. Since the previously introduced games only consist of a single decision point,
only one set of regrets had to be computed, while Kuhn poker consist of a decision
point per information set. Additionally, as Zinkevich et al. (2007) have shown, the sum
of counterfactual regrets is never less than the overall regret. This makes it possible to,
instead of minimizing the overall regret, minimize each counterfactual regret seperately
and thereby minimizing overall regret. Before presenting the equation, we need to
define σ(I→a) as the strategy profile identical to σ except that player P (I) always
chooses action a ∈ A(I) in information set I ∈ Ii. The formula for calculating the
cumulative counterfactual regret RT

i (I, a) for player i, round T and action a ∈ A(I)
in information set I ∈ I is the following:

RT
i (I, a) =

T∑
t=1

πσt

−i(I)(ui(σ
t
(I→a), I)− ui(σ

t, I)) (5)

Although the equation looks intimidating, it’s basically the same as for the normal form
game. The main difference is that the utility function ui has the domain Σi instead of
A and the counterfactual regret for each round t is scaled by the probability πσt

−i of
reaching the given information set I with the opponent having made the last move.

We also define RT,+
i (I, a) = max(RT

i (I, a), 0), meaning the cumulative counter-
factual regret for action a in information set I such that it becomes 0 if it has a negative
value, player i’s probability for playing action a in information set I is denoted as σT+1

i

and computed with equation (6). The overall strategy, i.e. the probability distributions
over actions in information sets, is composed of those values.

9

σT+1
i (I)(a) =

RT,+

i (I,a)∑
a′∈A(I) R

T,+
i (I,a′)

if
∑

a′∈A(I) R
T,+
i (I, a′) > 0

1
|A(I)| otherwise

(6)

The value computed if the first condition in (6) is met corresponds quite closely to how
the probability for playing an action in the next round is computed for normal-form
games. The cummulative regret for the given action a played in information set I is
divided (and thereby normalized) by the total regret for that information set. If the
total regret for the information set is 0, that means no round has been played yet and
therefore the probability for being played is initialized as being equal for each action.
The counterfactual regret r(a, h) of not taking action a at history h or information
set I is computed by means of the counterfactual value as in equations (8) and (9)
respectively. The counterfactual value vi(σ, h) is computed as in equation (7).

vi(σ, h) =
∑

z∈Z,h⊏z

πσ
−i(h)π

σ(h, z)ui(z) (7)

r(h, a) = vi(σ(I→a), h)− vi(σ, h) (8)

r(I, a) =
∑
h∈I

r(h, a) (9)

3.2.2 Using CFR to approximate the Nash Equilibrium for Kuhn Poker

With the components introduced, we can now show how they are utilized in CFR to
approximate the Nash equilibrium for Kuhn poker. On an abstract level, this is done
quite similarly as with rock-paper-scissors, as in that the algorithm iteratively plays
against itself and tries to minimize the overall regret by using the regret to update
its strategy. On a concrete level, it does this by minimizing the counterfactual regret
for each information set seperately. In order to do this, it has to perform a recursive
depth-first traversal of the entire game tree for each iteration, thereby calculating the
counterfactual regret for each action in each information set. With that done, a new
strategy σT+1

i (I, a) is computed by normalizing the cumulative counterfactual regret
RT

i (I, a) for each action ai in information set I .
A significant difference to CFR performing on a normal-form game is that we need

to keep track of the history, as seen in the formulas above. This is implemented as a
string, whereby each character represents a node we have visited. This paper assigns
the following characters:

• 'r': Chance node

• 'c': Check

• 'b': Bet

10

E.g. "rrcbc" describes the history whereby after two chance nodes (i.e. both players
being dealt cards) player 1 checks, then player 2 bets, then player 1 checks again.

As the game tree is recursively traversed, the relevant function checks if the given
history represents a terminal node (as does the example history in the above paragraph),
in which case the utility functions are computed and the regrets and strategies are up-
dated. If it is not a terminal node, then the tree gets traversed further by recursively
calling the same function for both versions of the extended history, i.e. with both "c"
and "b" appended to the current history. Thereby the tree is traversed entirely per iter-
ation and the counterfactual regrets are computed for each action in each information
set.

After T = 105 iterations, the computed strategy profile and approximated Nash
equilibrium σ (consisting of all elements a1 ∈ A1 and a2 ∈ A2) for Kuhn poker will
look as such (Sermeno 2014):

Check Bet
J "rr" 0.79 0.21
J "rrcb" 1.00 0.00
K "rr" 0.39 0.61
K "rrcb" 0.00 1.00
Q "rr" 1.00 0.00
Q "rrcb" 0.45 0.55

Table 1: Approximated optimal strat-
egy for player 1.

Check Bet
J "rrb" 1.00 0.00
J "rrc" 0.67 0.33
K "rrb" 0.00 1.00
K "rrc" 0.00 1.00
Q "rrb" 0.66 0.34
Q "rrc" 1.00 0.00

Table 2: Approximated optimal strat-
egy for player 2.

J, Q and K refer to the card which has been dealt to the player and together with the
string denoting a history refers to an information set. The floating point numbers in
the range [0, 1] refer to the probabilities σt

1(a, I) of action a in information set I being
played at T = 105. The rows denote the information sets I and the columns denote the
actions a within the given information set.

3.2.3 Monte-Carlo CFR

The CFR algorithm suffices to approximate the Nash equilibrium for Kuhn poker, yet
it scales badly, since the entire game tree gets traversed for every round of self-play.
Considering that the size of a game tree in extentensive-form grows exponentially with
additional cards, bet sizes and players, and therefore the computations required also
grow exponentially, it follows that certain adjustments need to be made. One seminal
adjustment to reduce the amount of computation is Monte-Carlo CFR (Lanctot et al.
2009), henceforth abreviated as MCCFR. The goal of MCCFR is to avoid traversing the
entire game tree. How this is done in detail can be found in the cited paper. The authors
empirically show that their method reduces time needed to converge significantly.

11

3.3 Modern poker AIs
MCCFR was famously used by Bowling et al. in 2015 in their seminal paper on being
the first to weakly solve2 heads-up limit hold’em poker, a two-player variant of poker
with 3.16× 1017 possible states and 3.19× 1014 decision points.3

The authors of the paper additionally used a technique called sub-game solving,
which this paper is not going to address in detail. The technique was introduced by
Burch et al. in 2014. It allows for treating each node as responsible for a set of sub-
games, which can be separately solved. Bowling et al. made use of this due to the fact
that, despite not using floating-point numbers and compressing the stored regrets and
strategies by ratios of 13-to-1 and 28-to-1 respectively, the regrets still take up 11 TB of
storage, the strategies 6 TB, which obviously exceeds any feasible memory availability.
By treating the game as a set of subgames, each subgame can be solved seperately and
only the relevant subset of regrets and strategies is loaded into memory at any given
time.

Additionally, to even further improves the rate of convergence, they make use of
CFR+, introduced by Tammelin (2014). CFR+ firstly converts the floating-point arith-
metic of regret- and strategy-storagy to fixed-point integer arithmetic in order to re-
duce storage. Secondly, it uses regret-matching+, which treats negative counterfactual
regrets as being equal to 0. The authors argue that this reduces the time needed for
convergence significantly.

3.3.1 DeepStack

DeepStack was the first AI to beat professional poker players by a statistically signifi-
cant margin. It was introduced by Moravčík et al. only recently in 2017. What makes
this more impressive is that it plays Heads-up no-limit hold’em, which has roughly
10160 game states. This is significantly more than the roughly 1014 states of heads-up
limit hold’em solved by Bowling et al. This is due to the fact that there’s no restriction
on individual betting (hence the name "no-limit"), which trivially leads to a significant
increase in possible game states.

Instead of explicit abstraction in order to reduce the amount of game states in or-
der to calculate a compute a complete set of strategies prior to playing, it recursively
iterates through a part of the game tree while playing. It learns how to decide which
part of the game tree it should traverse in real time by means of deep learning prior
to play. For deep learning it uses "examples from random poker situations" (Moravčík
et al. 2017).

3.3.2 Pluribus

The last and most recently developed poker AI covered in this paper is Pluribus, which,
as the name suggests, was the first AI to beat professional poker players in six-player

2 Weakly solving a game refers to developing an algorithm which can guarantee a win or a draw against
any possible opponent, if played from the beginning.

3 These numbers differ because, as we’ve established throughout this paper, poker is an imperfect
information game and therefore certain decision points are indistinguishable to the player and therefore
grouped into information sets I .

12

no-limit hold’em. It was introduced by Brown and Sandholm in 2019. The multiplayer
context changes a lot compared to the two-player context, which was exclusively con-
sidered in this paper up until now. In the special case of two-player zero-sum games, if
all players independently compute a Nash equilibrium and let it dictate their play, the
list of strategies used still ends up being a Nash equilibrium. This is not necessarily the
case for games with n > 2 therefore it is also not necessarily beneficial to compute a
Nash equilibrium for a multiplayer game.

The authors state that Pluribus’ self-play does not necessarily converge to an Nash
equilibrium. Yet as with Libratus, it uses MCCFR with both information- and action-
abstraction to compute a blueprint strategy, which is used in the first round of betting.
It later uses real-time sub-game solving. How this is done will not be further covered,
since it would exceed the scope of this paper.

4 Conclusion
This paper has tried to deliver a self-contained introduction into how poker, as an
imperfect-information game, can be tackled by an algorithm. We therefore introduced
CFR, demonstrating its functionality on rock-paper-scissors in normal form and later
extending its scope to be able to compute an optimal strategy for Kuhn poker in se-
quential form. Due to the fact, that many powerful poker AIs use variations of CFR,
the last part was dedicated to showing how some of those adapt CFR to become more
powerful and efficient.

This paper has hoped to establish the fact, that huge achievements can be accom-
plished using comparably simple concepts, like the Nash equilibrium and the methods
to approximate it (i.e. CFR). Of course the formulas to compute the individual compo-
nents become more complex as the scope of the games increases, while new measures
need to be met in order to reduce memory requirements and computational complexity
to a point of manageability, yet the fundamental concepts remain the same as the ones
that can be used to beat rock-paper-scissors. Alone the fact that CFR (or rather variants
thereof) are used in all the seminal poker AIs introduced in chapter 3.3 is somewhat
impressive.

And despite this, it took some of the greatest minds in the field decades to even
develop an algorithm such as CFR, let alone weakly beat the game of poker. But
once that milestone (i.e. weakly solving poker) had been reached, new milestones
were achieved on nearly a yearly basis. Today, AIs such as Pluribus are considered
unbeatable, even by the best players the game has to offer.

References
Batzilis, D., Jaffe, S., Levitt, S., List, J. A., and Picel, J. (2019). Behavior in strategic

settings: Evidence from a million rock-paper-scissors games. Games, 10(2):18.

Bowling, M., Burch, N., Johanson, M., and Tammelin, O. (2015). Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149.

13

Brown, N. and Sandholm, T. (2019). Superhuman ai for multiplayer poker. Science,
365(6456):885–890.

Burch, N., Johanson, M., and Bowling, M. (2014). Solving imperfect information
games using decomposition. In Twenty-eighth AAAI conference on artificial intelli-
gence.

Johanson, M. (2013). Measuring the size of large no-limit poker games. arXiv preprint
arXiv:1302.7008.

Kuhn, H. W. (2016). 9. a simplified two-person poker. In Contributions to the Theory
of Games (AM-24), Volume I, pages 97–104. Princeton University Press.

Lanctot, M., Waugh, K., Zinkevich, M., and Bowling, M. (2009). Monte carlo sam-
pling for regret minimization in extensive games. Advances in neural information
processing systems, 22:1078–1086.

Levin, J. (2002). Games of incomplete information. Standford Education. Retrieved.

Milovsky, N. (2014). The basics of game theory and associated games.

Moravčík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D., Bard, N., Davis, T.,
Waugh, K., Johanson, M., and Bowling, M. (2017). Deepstack: Expert-level ar-
tificial intelligence in heads-up no-limit poker. Science, 356(6337):508–513.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36(1):48–49.

Neller, T. W. and Lanctot, M. (2013). An introduction to counterfactual regret min-
imization. In Proceedings of Model AI Assignments, The Fourth Symposium on
Educational Advances in Artificial Intelligence (EAAI-2013), volume 11.

Sermeno, J. (2014). Vanilla counterfactual regret minimization for engineers. https:
//justinsermeno.com/posts/cfr/. [Accessed on 29.10.2021].

Tammelin, O. (2014). Solving large imperfect information games using cfr+. arXiv
preprint arXiv:1407.5042.

Tran, M. (1996). Deep blue computer beats world chess champion. the Guardian.

von Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathematische annalen,
100(1):295–320.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C. (2007). Regret mini-
mization in games with incomplete information. Advances in neural information
processing systems, 20:1729–1736.

14

https://justinsermeno.com/posts/cfr/
https://justinsermeno.com/posts/cfr/

	Introduction
	Formal Concepts used in Poker Algorithms
	Rules of Poker
	Nash Equilibrium
	Normal-form games
	Imperfect-Information Games

	Counterfactual Regret Minimization
	Example: Rock-Paper-Scissors
	Example: Kuhn Poker
	Adapting CFR for extensive-form Games
	Using CFR to approximate the Nash Equilibrium for Kuhn Poker
	Monte-Carlo CFR

	Modern poker AIs
	DeepStack
	Pluribus

	Conclusion

