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1 Introduction

Segmantic segmentation is a computer vision task that involves individually
classifying the pixels of an image. Traditional approaches to solving this task
include graph-based segmentation (Felzenszwalb and Huttenlocher, 2004) and
utilising Markov random fields (Felzenszwalb and Huttenlocher, 2006). In recent
years, the focus has shifted to using convolutional neural networks (CNNs), a
supervised learning approach that tends to outperform more traditional models
(Long, Shelhamer, and Darrell, 2015). It has been suggested that CNNs can
be further enhanced by pre-training the model before supervised fine-tuning
is performed, improving performance on various visual domains (Jiang et al.,
2020) (Zoph et al., 2020). Pre-training using self-supervised contrastive learning
in particular has shown promising results (He, X. Chen, et al., 2022) (Wang
et al., 2021). Contrastive learning is a self-supervised learning algorithm which
learns to distinguish between similar and dissimilar image pairs. By training
on these relationships, the model learns the fundamental relationship structure
of the data without relying on labels. It is thus capable of making use of an
abundance of unlabeled data to learn rich representations which we can use to
our advantage during a later supervised fine-tuning stage (Jaiswal et al., 2020).

Our minimum required project involves implementing and evaluating such
a pre-trained deep learning model for semantic pixel-wise segmentation on the
Oxford-IIIT Pet dataset (Parkhi et al., 2012). The dataset provides masks as
labels, whereby each pixel is classified as either background, foreground or un-
known. An example can be observed in Figure 4. We will compare the results
of a model pre-trained on this dataset to a baseline model which was fine-tuned
without pre-training in order to determine if pre-training improves the segmen-
tation performance. Additionally, we will evaluate the difference between the
test performance of the two models on different training dataset sizes.

For pre-training we use SimCLR, a simple framework for contrastive learning
on a visual domain (T. Chen et al., 2020). Many contrastive learning frameworks
have been proposed, such as MoCo (He, Fan, et al., 2020) and BYOL (Grill
et al., 2020). We opted for SimCLR due to its relatively low computational
requirements, whilst offering a good balance between simplicity and performance.

SimCLR works by utilising data augmentation and a contrastive loss func-
tion. The data augmentation is used to create multiple views of the same image,
thereby constructing pairs of similar images. It does this by sampling two sep-
arate transform compositions t ∼ T and t′ ∼ T from a distribution over a pool



2 Max Jappert

of transforms T . This pool of transforms consists of cropping, flipping and color
jitter. The pairs are used in conjunction with the contrastive loss function to
learn similarity relationships.

For our open-ended question we propose extending SimCLR by adding three
additional transforms to T . We evaluate how these changes influence the segmen-
tation performance in order to gain a deeper understanding of the interaction
between contrastive pre-training and segmentation.

2 Methods

SimCLR uses temperature-scaled cross entropy loss (NT-Xent) as the contrastive
loss function. This loss function encourages the positive pairs (the augmented
images) to be close in the learned latent space, while maximising the distance
between negative (random, assumed to be dissimilar) pairs. A temperature scal-
ing parameter τ determines the degree of separation NT-Xent encourages. For
our experiments, we set τ = 0.5.

We used 64 × 64 ImageNet data (Deng et al., 2009) for pre-training due to
its availability and quality, thereby discarding the labels. We used the Oxford
IIIT Pet Dataset (Parkhi et al., 2012) for fine-tuning, as assigned.

The model we use is based on a ResNet-34, a downgrade from the ResNet-50
proposed in the original SimCLR paper (T. Chen et al., 2020) due to limited
computational resources. A ResNet is a deep CNN architecture incorporating
residual blocks in order to avoid exploding or vanishing gradients, allowing for
very deep and powerful networks (He, Zhang, et al., 2016). During pre-training,
the ResNet’s head is replaced by a pre-training head consisting of two fully
connected layers with 512 neurons each and a ReLU activation function. After
pre-training, we replace the pre-training head with the segmentation head and
the loss function by a cross entropy loss. The segmentation head consists of five
convolutional layers, with a bilinear upsampling layer between each pair. The
segmentation head uses the latent space outputted by the head-less ResNet-34
and uses five alternating convolutional and upsampling layers to convert it to a
segmentation mask.

We use the ADAM optimiser (Kingma and Ba, 2014) for both pre-training
and fine-tuning, with initial learning rates ηPT = 10−2 for the former and ηFT =
10−3 for the latter. We use a step decay on the learning rate for pre-training with
time-step t = 10 and decay rate γ = 0.5.

We use a 4:1 training/validation split for the ImageNet dataset. For the
Oxford IIIT Pets dataset we use a 1:1 training+validation/test split as suggested
by the authors and a 4:1 training/validation split on the former split. We use
batch sizes of 2048 for pre-training and 128 for fine-tuning, the maximum our
hardware allows for.

All computations were run on a computer with an RTX 4080 GPU with 16
GB VRAM, an Intel i7 13700K CPU, 32 GB RAM and a 2TB hard drive. The
source code for this project can be found at https://github.com/maxjappert/
pet_segmentation.
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3 Experiments

For the minimum required project, we compare the fine-tuned model with a
baseline model. The baseline model consists of the same architecture, differing
only in that it has not been pre-trained, i.e., the fine-tuning starts from an unin-
formed state. We will consider the loss functions and the classification accuracy
as metrics to evaluate model performance. Furthermore, we will consider Inter-
section over Union, which describes the ratio of the mask intersection and mask
union between the predicted test masks and the ground truth.

We also evaluate how the performance of both models changes as the fine-
tuning dataset size increases. This experiment stems from the intuitive notion
that increasing the available data variety should increase the possibility of learn-
ing to correctly perform the task. We are interested in determining if the two
models are differently influenced by this change.

For our open-ended question we will investigate how different combinations
of new transformations added to T affect pre-training and the final model per-
formance. The proposed transforms are elastic transformation, solarise and pos-
terise. The visual effect of the proposed transforms can be observed in Figure 1.
We argue that these transforms could increase the model performance as they
fulfil the qualitative requirements by altering the image’s appearance noticeably
while retaining the semantic content. E.g., Figure 1 features four representa-
tions of what is clearly the same photo, while at the same time having obviously
undergone four different transformations.

The second part of our open-ended question will involve using different
dataset sizes for fine-tuning and evaluating

Fig. 1. Additional transformations proposed for the open-ended question. From left to
right the figure shows the original, the elastic transformed, solarised and posterised
images.

4 Results

The model achieves satisfactory pre-training performance, converging to a nor-
malised pre-training loss of around 0.0003. This is an order of magnitude lower
than the starting loss of 0.004. The training loss over the epochs is visualised in
Figure 2.

Similarly, fine-tuning progresses as expected, whereby both the training and
validation losses continuously decrease while both classification accuracies in-
crease. This can be observed in Figure 3.
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Fig. 2. Pre-training performance in terms
of the normalized NT-Xent loss over the
epochs.

Fig. 3. Fine-tuning performance of the
pre-trained and baseline models in terms
of the normalized cross entropy loss and
classification accuracy over epochs.

The training of the two models reveals that the pre-trained model provides
better validation performance in terms of both the cross entropy loss and the
segmentation accuracy when compared to the baseline model. This conclusion
can be drawn from the plots in Figure 3, which provide a visualisation of the
fine-tuning performance over epochs.

Fig. 4. Comparison of the learned masks on the test data using the baseline model for
the left image and the pre-trained model for the right image. Each is visualised next
to the corresponding ground truth mask and original images.

The pre-trained model achieves a test accuracy of 80.9%, compared to the
78.5% test accuracy of the baseline model. It achieved an IoU of 80.7% compared
to an IoU of 80.8% achieved by the baseline model. The models learn masks which
can be observed in Figure 4.

We can observe in Figure 4 that the model fundamentally does what it should.
It recognises the area in the image which is in the foreground. Nonetheless, it
does not do this in great detail, instead sketching a rough outline.

We observe that increasing the fine-tuning dataset size increases performance
on the test set up to the 3669 images contained in the Oxford IIIT Pets training
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dataset in terms of accuracy and IoU. Furthermore, we can observe a consistent
difference between the baseline and the pre-trained models in terms of the per-
formance metrics, whereby the latter consistently performs better. The results
of this experiment are visualised in Figure 5.

The minimum required project results thus suggest that pre-training with
SimCLR can at least marginally improve segmentation performance.

Fig. 5. Evaluated influence of the fine-tuning dataset size on segmentation test perfor-
mance of both the pre-trained model.

Regarding the open-ended question, the results we obtain by introducing
the new transforms suggest that their inclusion has no impact on the model
performance in terms of none of the evaluated metrics. This can be observed in
Table 1.

Table 1. Oxford-IIT Pet testset metrics for our fine-tuned models.

Model Accuracy IoU Dice Coeffi-
cient

Precision Recall

Baseline 0.785 0.807 0.813 0.879 0.939
SimCLR 0.809 0.808 0.812 0.930 0.927
ET+RP+RS 0.809 0.831 0.827 0.909 0.953
ET 0.812 0.844 0.812 0.923 0.961
ET+RP 0.812 0.823 0.821 0.924 0.940
ET+RS 0.809 0.824 0.822 0.915 0.946
RP 0.810 0.817 0.817 0.929 0.931
RP+RS 0.811 0.823 0.821 0.921 0.943
RS 0.812 0.829 0.825 0.917 0.948

5 Discussion

Regarding the open-ended question, our results suggests that as long as SimCLR
performs transforms which render two different images while retaining their se-
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mantic content, it will manage to learn equally useful representations. We thus
argue that the exact choice of transforms is unimportant as long as the selec-
tion of transforms leads to useful results by noticeably altering the images while
retaining their semantic content.

Regarding the second part of the open-ended question, while our results sug-
gest that an increased training set size during pre-training leads to an increased
segmentation performance, it is likely that this does not extend to arbitrarily
large datasets. It would therefore be interesting to investigate the point at which
this development stagnates or even diminishes due to overfitting.

It would be interesting to investigate how the downgrade from a ResNet-50
(in the original SimCLR paper (T. Chen et al., 2020)) to the ResNet-34 used
in this project influences the pre-training and segmentation performances. This
is particularly important as our model’s performance is limited and there is a
significant room for improvement. The current segmentation performance might
be sufficient for some use-cases which do not require a detailed outline of the
object in question, such as for identifying bounding boxes, yet it would not be
sufficient, e.g., for automatically removing the background of an image.

Another approach to improving model performance could involve hyperpa-
rameter tuning, which could be done with a genetic algorithm and k-fold cross
validation. The hyperparameters we could tune are τ , the batch sizes, the choice
of optimiser and the learning rates ηPT and ηFT .

Finally, the numbers we present in our experiments are the result of a single
execution. Our results would be more useful when aggregated over multiple ex-
ecutions and reported with a mean and standard deviation. We opted not to do
this due to the computational cost of re-training multiple models.

6 Conclusion

The results of this project demonstrate that pre-training with contrastive learn-
ing can lead to an increased segmentation performance when compared to a
baseline model which was fine-tuned without pre-training. The resulting pre-
trained model performs well, but not exceptionally, with a pixel classification
accuracy of around 81% on unseen data. This suffices for correctly detecting the
rough outline of the animal in the foreground, but not for a detailed reconstruc-
tion. Furthermore, our results suggest that an increased dataset size during the
contrastive learning phase leads to increased performance, up to a certain point.
We also conclude that the inclusion of new, previously unexplored transforma-
tions into the SimCLR pre-training has no effect on segmentation performance.
Overall, this project offers a solid and insightful foundation with plenty of room
for improvement.
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